## CPSC 312 - Functional and Logic Programming

- Assignment 4 is due next Thursday!
- No textbook for logic programning; see readings tab.
- Get SWI Prolog.
- "Learn at least a half dozen programming languages. Include one language that emphasizes class abstractions (like Java or C++), one that emphasizes functional abstraction (like Lisp or ML or Haskell), one that supports syntactic abstraction (like Lisp), one that supports declarative specifications (like Prolog or $\mathrm{C}++$ templates), and one that emphasizes parallelism (like Clojure or Go)."

Peter Norvig "Teach Yourself Programming in Ten Years" http://norvig.com/21-days.html

## Plan

- Logic Programming
- Propositional logic programs
- Semantics
- Bottom-up and top-down proof procedures
- Datalog
- Logic programs with function symbols
- Applications (e.g., natural language processing)
- Semantic web

Today:

- Syntax and semantics of propositional definite clauses
- Model a simple domain using propositional definite clauses
- Bottom-up proof procedure


## What is Logic programming

- Functional programming + search + flexible pattern matching + relations
- As a simple database language (Datalog) + function symbols (= data constructors)
- Statements of a subset of first-order logic, with procedural interpretation
- Prolog started as a tool to write natural language understanding systems (and is used today in controlled natural language situations).


## Haskell vs Prolog Example: append (first.pl)

Haskell:
-- append [a1,a2,..an] [b1,..,bm] = [a1..an,b1,..,bm]
append [] $12=12$
append (h:r) $12=\mathrm{h}:$ append r 12
Prolog
\% append([a1,a2,..an], [b1,..,bm], [a1..an,b1,..,bm])
append([], L2, L2).
append([H|R], L2, [H|L3]) :append (R,L2,L3).

Some Prolog queries:
append([1,2,3], $[7,8,9], R)$.
append([1,2], X, [1,2,3,4,5]).
append( $X, Y,[1,2,3,4,5]$ ).
$\operatorname{append}(X,[3 \mid Y],[1,2,3,4,5,4,3,2,1])$.

## Haskell vs Prolog Example: del1

Delete one instance of an element from a list. Haskell:

```
del1 :: Eq e => e -> [e] -> Maybe [e]
del1 _ [] = Nothing
del1 e (h:t)
    | e==h = Just t
    | otherwise = fmap (h:) (del1 e t)
```

Prolog:
\% del1(E,L,R) is true if $R$ is the $L$ with one $E$ removed del1(E, [E|Y],Y).
del1(E, [H|T], [H|Z]) :del1 (E, T, Z).

Some Prolog queries:
del1(a, [a,v,a,t,a,r],A).
del1(b, [a, v, a, t, a, r], A).

## Datalog program: family relationships (family.pl)

\% father (X, Y) means $X$ is the father of $Y$
father(pierre, justin).
father(pierre, alexandre).
father(pierre, michel).
father(justin, xavier).
father(justin, ella_grace).
\% mother (X, Y) means $X$ is the mother of $Y$
mother(margaret, justin).
mother(margaret, alexandre).
mother(margaret, michel).
mother(sophie, xavier).
mother(sophie, ella_grace).
\% Also defined: parent, grandmother, sibling, ancestor

## A progression of logical languages

- Propositional logic programs: atoms have no arguments.
- Datalog: allow for logical variables in clauses.
- Pure Prolog: Datalog + function symbols


## Propositional Logic Program Syntax

- An atom is of the form $p$, a word that (can contain letters, digits and underscore _ ) and starts with a lower-case letter.
- A body is either
- an atom or
- $\left(b_{1}, b_{2}\right)$ where $b_{1}$ and $b_{2}$ are bodies. (Parentheses are optional). A comma in a body means "and".
- A definite clause is either
- an atomic clause: an atom or
- a rule: $h$ :- $b$ where $h$ is an atom and $b$ is a body.
:- means "if"
An atomic clause is treated as a rule with an empty body. All definite clauses ends with a period "."
- A logic program or knowledge base is a set of definite clauses
- A query is a body that is asked at the Prolog prompt (ended with a period).


## Electrical Environment



## Example Knowledge Base (elect_prop.pl)

|  | lit_I $l_{1}$ :- live_w ${ }_{0}$, ok_/ $l_{1}$ |
| :---: | :---: |
| light_ $1_{1}$. | live_w $w_{0}$ :- live_w ${ }_{1}$, up_s ${ }_{2}$. |
| light_2. | live_w $\mathrm{w}_{0}$ :- live_w ${ }_{2}$, down_s2. |
| down_s ${ }_{1}$. | live_w $w_{1}$ :- live_w ${ }_{3}$, up_s $s_{1}$. |
| $u p_{-} s_{2}$. | live_w $\mathrm{w}_{2}$ :- live_w $\mathrm{w}_{3}$, down_s $\mathrm{s}_{1}$. |
| up_S3. | lit_ $I_{2}$ : - live_ $W_{4}$, ok_ $l_{2}$. |
| ok_11. | live_w ${ }_{4}$ :- live_w ${ }_{3}$, up_s3. |
| ok_l2. | live_p1:- live_w ${ }_{3}$. |
| ok_cb1. | live_w $\mathrm{w}_{3}$ :- live_ $w_{5}$, ok_cb1. |
| ok_cb2. | live_p $p_{2}$ :- live_w6. |
| live_outside. | live_w $\mathbf{w}_{6}$ :- live_w $w_{5}$, ok_cb ${ }_{2}$. |
|  | live_W5 :- live_outside. |

## Clicker Question

Which of the following is a clause?
A happy :- Good.
B happy, rich :- good.
C happy :- .
D rich; sad :- good.
E None of the above

## Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.
Step 4 Ask the system questions.

- The system gives answers.
- Person can interpret the answer with the meaning associated with the atoms.


## Electrical Environment



## Role of semantics in electrical domain

In user's mind:

- light1_broken: light 1 is broken
- sw1_up: switch 1 is up
- sw2_up: switch 2 is up
- power: there is power in the building
- unlit_light1: light 1 isn't lit
- lit_light2: light 2 is lit
- The computer doesn't know the meaning of the symbols
- The user can interpret the symbol using their meaning


## Semantics

- An interpretation I assigns a truth value to each atom.
- True of compound propositions in interpretation is derived from truth table:

| $p$ | $q$ | $p, q$ | $p:-q$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | false | false | true |
| false | true | false | false |
| false | false | false | true |

- A body $\left(b_{1}, b_{2}\right)$ is true in $I$ if $b_{1}$ is true in $I$ and $b_{2}$ is true in $I$.
- A rule $h:-b$ is false in $I$ if $b$ is true in $I$ and $h$ is false in $I$. The rule is true otherwise.
- A knowledge base $K B$ is true in I if and only if every clause in $K B$ is true in $l$.


## Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If $K B$ is a set of clauses and $g$ is a conjunction of atoms, $g$ is a logical consequence of $K B$, written $K B \models g$, if $g$ is true in every model of $K B$.
- That is, $K B \models g$ if there is no interpretation in which $K B$ is true and $g$ is false.


## Simple Example (clicker question)

$$
K B=\left\{\begin{array}{l}
p:-q \\
q . \\
r:-s .
\end{array}\right.
$$

A yes
B no
C I'm not sure

|  | $p$ | $q$ | $r$ | $s$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
|  | model of KB ? |  |  |  |  |
| $I_{1}$ | true | true | true | true |  |
| is a model of $K B$ |  |  |  |  |  |
| $I_{2}$ | false | false | false | false |  |
| not a model of $K B$ |  |  |  |  |  |
| $I_{3}$ | true | true | false | false | is a model of $K B$ |
| $I_{4}$ | true | true | true | false | is a model of $K B$ |
| $I_{5}$ | true | true | false | true | not a model of $K B$ |

Does $p, q, r, s$ logically follow from KB ?
$K B \models p, K B \models q, K B \not \vDash r, K B \not \vDash s$

