
Announcements

Midterm #2 Monday after midterm break — see the course
web site for more details (same format as Midterm 1,
including you can write up to 24 hours early)

Watch Piazza for booking project demos

One must learn by doing the thing; for though you think you
know it, you have no certainty until you try.

Sophocles (≈ 497- 406 BCE)

The doer alone learneth.

Friedrich Nietzsche (1844 – 1900)

©D. Poole 2024 CPSC 312 — Lecture 17 1 / 12

Review: Haskell since midterm

type defines a type name as an abbreviation for other types

data defines new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

newtype is like data but with more restrictions (and no
runtime overhead)

Type constructors and type variables

©D. Poole 2024 CPSC 312 — Lecture 17 2 / 12

Last week

Abstraction for games, so we can write interfaces and solvers
for any games that fit the abstraction

Representation of magic-sum game and count game

A simple human interface for the abstraction

mm_player: a player that searches through all possible games
and returns a best move. (Using minimax).

Make minimax more efficient (Caching / Memoization)

Abstract data types

Threading state and memoization

Trees and functions as implementations for dictionaries

Today:

Defining classes and higher level abstractions

©D. Poole 2024 CPSC 312 — Lecture 17 3 / 12

Building a game abstraction

What do we need to represent:

Magic sum game and other “fully observable” games

Blackjack (or other card game)

Adventure game where agent can move around, collect
rewards, get penalties (without necessarily turn-taking with an
opponent)

Agents that can have state (e.g., agents that learn)

Multiple games at the same time (e.g, simultaneously play
magic sum and count games)

Questions

What did we need to put the game abstraction at the top of
the Magic sum game?

What is wrong with having

type Player = State -> Action

See: Games2.hs
©D. Poole 2024 CPSC 312 — Lecture 17 4 / 12

Games2.hs

An interface for games (Games2.hs)

-- gs=game_state act=action

data State gs act = State gs [act]

deriving (Ord, Eq, Show)

data Result gs act =

EndOfGame String Double (State gs act)

| ContinueGame Double (State gs act)

deriving (Eq, Show)

type Game gs act = act -> State gs act -> Result gs act

-- gs=game_state act=action ps=player_state

type Player gs act ps = Game gs act -> Result gs act

-> ps -> (act, ps)

©D. Poole 2024 CPSC 312 — Lecture 17 5 / 12

Clicker Question

data State gs act = State gs [act]

data Result gs act =

EndOfGame String Double (State gs act)

| ContinueGame Double (State gs act)

What is not true?

A State is both a type constructor and a function

B The State function takes a gs and a list of act

C EndOfGame is a function that takes 3 arguments

D Result is a function that takes 2 arguments

©D. Poole 2024 CPSC 312 — Lecture 17 6 / 12

Clicker Question

data State gs act = State gs [act]

data Result gs act =

EndOfGame String Double (State gs act)

| ContinueGame Double (State gs act)

----------------------------------**************

The (State gs act) above the stars

A Gives an error because act should be in square brackets

B Refers to the type constructor for State

C Refers to the function State

D Doesn’t need the gs act arguments

©D. Poole 2024 CPSC 312 — Lecture 17 7 / 12

Clicker Question

data Result gs act =

EndOfGame String Double (State gs act)

| ContinueGame Double (State gs act)

deriving (Eq, Show)

What is not true:

A gs is a type variable

B EndOfGame "Fun" 7 bla

is of type Result Int Int as long as bla is of type
State Int Int.

C At compile time gs needs to be resolved into an actual type

D ContinueGame is a function that takes 2 arguments

E A function to return the reward associated with a result can
have the type
reward :: Result -> Double

©D. Poole 2024 CPSC 312 — Lecture 17 8 / 12

Clicker Question

If we were to have:

type Game mt st init

= Action mt st init -> Result mt st init

What is true:

A Everything of type Game is a function that takes one argument

C Everything of type Game is a function that takes three
arguments

D We cannot tell what something of type Game is from this
declaration

©D. Poole 2024 CPSC 312 — Lecture 17 9 / 12

Redefining show for card games (Games2.hs)

What if we also want to include blackjack?
Actions: Flip, Hold
State: current count and the deck
The state for blackjack includes the deck, but the player
shouldn’t see or have access to the deck!!
It shouldn’t be able to simulate next card.
Don’t export the constructor:

data Rands = RandsC [Double] -- random numbers

instance Show Rands where

show d = "_"

instance Eq Rands where

x == y = True

instance Ord Rands where

x <= y = True

Deck is an infinite list of numbers.
Generating random numbers with a seed from system can only
be done in IO.
But the infinite list can be passed as an argument.
The game abstraction has a way to pass the state of the game.

©D. Poole 2024 CPSC 312 — Lecture 17 10 / 12

Dictionaries without data structures

A dictionary is a function from keys into values.
Functions can be used to implement dictionaries

type Dict k v = (k -> Maybe v)

How can we implement

emptyDict:: Dict k v -- the empty dictionary

getval :: (Eq k) => k -> Dict k v -> Maybe v

insertval :: (Eq k) => k -> v -> Dict k v -> Dict k v

show :: (Dict k v) -> String

To enable show:

newtype Dict k v = FunDict (k -> Maybe v)

except then we can’t implement show for dictionaries

instance Show (Dict k t) where

show d = "Function_dictionary"

(see FunDict2.hs, FunDict.hs)

©D. Poole 2024 CPSC 312 — Lecture 17 11 / 12

Functional programming in other languages
(pythonDemo.py)

Other languages have adopted features from functional
programming languages.

E.g. Python has functions as first-class objects, lambda, list
comprehensions (as well as set comprehensions, dictionary
comprehensions), and even some lazy computation.

a1 = lambda x:x+1

a17 = a1(7)

odd = lambda n: n % 2 ==1

def even(n): return n % 2 == 0

l1 = [x*x for x in range(10) if odd(x)] # list

s1 = {x*x for x in range(10) if odd(x)} # set

d1 = {x*x:x for x in range(10) if odd(x)} # dictionary

g1 = (x*x for x in range(10) if odd(x)) # generator

Sometimes they do weird things (because of side effects).

©D. Poole 2024 CPSC 312 — Lecture 17 12 / 12

