
Announcements

Midterm #2 Monday after break — same format as midterm 1

One must learn by doing the thing; for though you think you
know it, you have no certainty until you try.

Sophocles (≈ 497- 406 BCE)

©D. Poole 2024 CPSC 312 — Lecture 16 1 / 12

Review: Haskell since midterm

type defines a type name as an abbreviation for other types

data defines new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

©D. Poole 2024 CPSC 312 — Lecture 16 2 / 12

Overview

Last classes:

Abstraction for games, so we can write interfaces and solvers
for any games that fit the abstraction

Representation of magic-sum game and count game

A simple human interface for the abstraction

mm_player: a player that searches through all possible games
and returns a best move. (Using minimax).

Make minimax more efficient (Caching / Memoization)

Abstract data types

Threading state

Today:

More on games and abstract data types

©D. Poole 2024 CPSC 312 — Lecture 16 3 / 12

Making Caching Useful

Caching doesn’t prune any nodes in magic-sum game! Why?

Represent each state in canonical form:
unique representation for each state. (sorted lists)

with import MagicSum and TreeDict (top of Minimax mem):

*Minimax_mem> minimax magicsum magicsum_start emptyDict

((9,0.0),dict)

*Minimax_mem> mema = (snd it)

*Minimax_mem> stats mema

"Number of elements=294778, Depth=103"

with import MagicSum ord and TreeDict (at the top of
Minimax mem):

*Minimax_mem> minimax magicsum magicsum_start emptyDict

((9,0.0),dict)

*Minimax_mem> mema = (snd it)

*Minimax_mem> stats mema

"Number of elements=4520, Depth=52"

©D. Poole 2024 CPSC 312 — Lecture 16 4 / 12

Balancing Trees

"Number of elements=294778, Depth=103"

"Number of elements=4520, Depth=52"

What is suspicious about this?
The trees are are very unbalanced. The first dictionary should
be able to be represented with a tree of depth 19, and the
second one with a tree of depth 13.

Is there a simple way to keep the tree approximately balanced?

use (hash k , k) as the key in the tree, as long as hask k
randomizes the ordering.

©D. Poole 2024 CPSC 312 — Lecture 16 5 / 12

Clicker Question

Using (hash k , k) as the key in the tree

A has to be done as a special case each time because hash needs
to be defined for each type, and Haskell needs a type for the
hash function

B could be done in DictTree just by calling hash

C could be done if we define a class for types that include a
hash function, and only use hash for types in the class

D requires support in a low level language like C++, because
hash functions could only improve performance if defined
efficiently in C++.

©D. Poole 2024 CPSC 312 — Lecture 16 6 / 12

Building a hashing dictionary

Define a class for types that implement hash

Make the type State be in that class

Define a hashing tree dictionary that uses hash, but does not
change the definition of TreeDict

©D. Poole 2024 CPSC 312 — Lecture 16 7 / 12

Defining classes (Hash.hs)

Define a class for types that implement hash

class Hash t where

hash :: t -> Int

A type in the Hash class implements hash.

Define hash functions for Ints e.g.:

instance Hash Int where

hash n = floor(numHashVals *

fractionalPart(arbMun *fromIntegral n))

Define a hash function for lists (as long as the base type is
hashable):

instance Hash t => Hash [t] where

hash [] = 1741

hash (h:t) = hash (hash h + hash t)

©D. Poole 2024 CPSC 312 — Lecture 16 8 / 12

Clicker Questions

For the two definitions of Hash for lists:

i) instance Hash t => Hash [t] where

hash [] = 1741

hash (h:t) = hash (hash h + hash t)

ii) instance Hash t => Hash [t] where

hash lst = hash (sum [hash e | e <- lst])

Which one always maps permutations to the same value?

A Both (i) and (ii)

B (i) but not (ii)

C (ii) but not (i)

D neither

©D. Poole 2024 CPSC 312 — Lecture 16 9 / 12

Defining a tree dictionary with hashing

How can we build a hashing tree dictionary, without changing
TreeDict?

See HashTreeDict.hs

Note that Haskell has a standard class Hashable that act like
our Hash.

©D. Poole 2024 CPSC 312 — Lecture 16 10 / 12

Incorporate Hashing into game playing

Import HashTreeDict into Minimax

See Minimax_mem_hash.hs

What else do we need to do?

See MagicSum_ord_hash.hs

©D. Poole 2024 CPSC 312 — Lecture 16 11 / 12

Building a game abstraction

What do we need to represent:

Magic sum game and other “fully observable” games

Blackjack (or other card game)

Adventure game where agent can move around, collect
rewards, get penalties (without necessarily turn-taking with an
opponent)

Agents that can have state (e.g., agents that learn)

Multiple games at the same time (e.g, simultaneously play
magic sum and count games)

Questions

What did we need to put the game abstraction at the top of
the Magic sum game?

What is wrong with having

type Player = State -> Action

See: Games2.hs
©D. Poole 2024 CPSC 312 — Lecture 16 12 / 12

Games2.hs

