
Announcements

I have made this longer than usual because I have not had time to
make it shorter.

Blaise Pascal, 1657

I have already made this paper too long, for which I must crave
pardon, not having now time to make it shorter.

Benjamin Franklin, 1750

From https:

//quoteinvestigator.com/2012/04/28/shorter-letter/

©D. Poole 2024 CPSC 312 — Lecture 15 1 / 10

https://quoteinvestigator.com/2012/04/28/shorter-letter/
https://quoteinvestigator.com/2012/04/28/shorter-letter/

Review: Haskell since midterm

type defines a type name as an abbreviation for other types

data defines new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

newtype is like data but with more restrictions (and no
runtime overhead)

©D. Poole 2024 CPSC 312 — Lecture 15 2 / 10

Overview

Last classes:

Abstraction for games, so we can write interfaces and solvers
for any games that fit the abstraction

Representation of magic-sum game and count game

A simple human interface for the abstraction

mm_player: a player that searches through all possible games
and returns a best move. (Using minimax).

Today:

Make minimax more efficient

Threading state

Memoization

Different dictionary implementations

©D. Poole 2024 CPSC 312 — Lecture 15 3 / 10

Games

Players observe state and make actions

Games take actions and update state of game, perhaps
finishing.

type Game = Action -> State -> Result

type Player = State -> Action

data State = State InternalState [Action]

deriving (Ord, Eq, Show)

data Result = EndOfGame Double State

| ContinueGame State

deriving (Eq, Show)

See MagicSum.hs Play.hs CountGame.hs

©D. Poole 2024 CPSC 312 — Lecture 15 4 / 10

Minimax

type Game = Action -> State -> Result

type Player = State -> Action

mm_player:: Game -> Player

The game can be asked hypothetical questions about the
result of a move. (Because it is functional.)

In any state (if there is a move available), the agent chooses
the action with the highest value after playing the action.
The value is either:
▶ the value for the end of the game, or
▶ the negation of the value for the opponent (who now plays)

minimax:: Game -> State -> (Action, Double)

Minimax takes a game and a state and returns (action,value)
for the best move (assuming there are moves available)

value:: Game -> Result -> Double

mm_player game state = fst (minimax game state)

See Minimax.hs (run the test cases)

©D. Poole 2024 CPSC 312 — Lecture 15 5 / 10

Minimax.hs

Improving Minimax by caching results

Minimax could cache the values of states it has evaluated

A dictionary can be used to remember values

A dictionary maps a key to a value

Dict k v

is a dictionary with key type k and value type v

Dict Interface:

emptyDict :: Dict k v

getval :: (Ord k) => k -> Dict k v -> Maybe v

insertval :: (Ord k) => k -> v -> Dict k v

-> Dict k v

stats :: Dict t1 t2 -> [Char]

“abstract data type”

Minimax can use
Dict state (action,value)

©D. Poole 2024 CPSC 312 — Lecture 15 6 / 10

Minimax with memory (Minimax mem.hs)

Minimax without memory:

minimax:: Game -> State -> (Action, Double)

valueact :: Game -> State -> Action -> Double

value:: Game -> Result -> Double

What type should memory be? Either:

type Mem = Dict State (Action, Double)

type Mem = Dict (State, Action) Double

Memory can be threaded through the program:

minimax:: Game -> State ->

Mem -> ((Action, Double), Mem)

valueact :: Game -> State -> Action ->

Mem -> (Double,Mem)

value:: Game -> Result ->

Mem -> (Double,Mem)

The can all use, pass the memory to functions they call, and
update memory as appropriate.

©D. Poole 2024 CPSC 312 — Lecture 15 7 / 10

Threading state through value function

value function without memory:

value:: Game -> Result -> Double

value _ (EndOfGame val _) = val

value game (ContinueGame st) =

let (_,val) = minimax game st

in -val

value function with memory (does not update dictionary)

type Mem = Dict State (Action, Double)

value:: Game -> Result -> Mem -> (Double, Mem)

value _ (EndOfGame val _) mem = (val, mem)

value game (ContinueGame st) mem =

let ((_,val), mem1) = minimax game st mem

in (-val, mem1)

©D. Poole 2024 CPSC 312 — Lecture 15 8 / 10

Threading state through minimax function

minimax:: Game -> State -> (Action, Double)

minimax game st =

argmax (valueact game st) avail

where State _ avail = st

With memory:

type Mem = Dict State (Action, Double)

minimax:: Game -> State -> Mem -> ((Action, Double), Mem)

minimax game st mem =

case getval st mem of

Just act_val -> (act_val,mem)

Nothing ->

let (act_val,mem1) =

argmax_mem (valueact game st) avail mem

in (act_val, (insertval st act_val mem1))

where State _ avail = st

©D. Poole 2024 CPSC 312 — Lecture 15 9 / 10

Argmax with memory

argmax :: Ord v => (e -> v) -> [e] -> (e,v)

argmax f [e] = (e, f e)

argmax f (h:t)

| fh > ft = (h,fh)

| otherwise = (bt, ft)

where (bt,ft) = argmax f t

fh = f h

argmax with memory

argmax_mem::Ord v=>(e-> m->(v,m)) -> [e] -> m -> ((e,v),m)

argmax_mem f [e] mem = ((e, v), mem1)

where (v, mem1) = f e mem

argmax_mem f (h:t) mem

| fh > ft = ((h,fh),mem2)

| otherwise = ((bt, ft),mem2)

where ((bt,ft),mem1) = argmax_mem f t mem

(fh,mem2) = f h mem1
©D. Poole 2024 CPSC 312 — Lecture 15 10 / 10

