
Announcements

“Everything should be made as simple as possible, but not
simpler.”

— attributed to Albert Einstein

©D. Poole 2024 CPSC 312 — Lecture 14 1 / 14

Haskell covered since midterm

type defines a type name as an abbreviation for other types

data defines new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

©D. Poole 2024 CPSC 312 — Lecture 14 2 / 14

Overview

Last class:

Abstraction for games, so we can write interfaces and solvers
for any games that fit the abstraction

Representation of magic-sum game and count game

A simple human interface for the abstraction

A generic solver for the abstraction

Today:

Make it more efficient

Abstract data types

Threading state

©D. Poole 2024 CPSC 312 — Lecture 14 3 / 14

Games

Players observe state and make actions

Games take actions and update state of game, perhaps
finishing.

type Game = Action -> State -> Result

type Player = State -> Action

data State = State InternalState [Action]

deriving (Ord, Eq, Show)

data Result = EndOfGame Double State

| ContinueGame State

deriving (Eq, Show)

See MagicSum.hs Play.hs CountGame.hs

©D. Poole 2024 CPSC 312 — Lecture 14 4 / 14

Magic Sum Game

players take turns choosing different numbers in range [0..9]

first player to have 3 numbers that sum to 15 wins

tie if they run out of numbers to play

To use Play.hs we need to define:

Action

Internal State

The Game Function

©D. Poole 2024 CPSC 312 — Lecture 14 5 / 14

Counting Game

Players can choose number in a fixed set, e.g., {1, 2, 3, 5, 7}
Internal state is a number

When a player plays an action i the state is incremented by i .

Player loses if the internal state is greater than or equal to a
break value (e.g., 20 or 21).

©D. Poole 2024 CPSC 312 — Lecture 14 6 / 14

Minimax

type Game = Action -> State -> Result

type Player = State -> Action

mm_player:: Game -> Player

Minimax takes a game and a state and returns (action,value)
for the best move (assuming there are moves available)

minimax:: Game -> State -> (Action, Double)

valueact :: Game -> State -> Action -> Double

value:: Game -> Result -> Double

The value is either:
▶ the value for the end of the game, or
▶ the negation of the value for the opponent (who now plays)

mm_player game state = fst (minimax game state)

See Minimax.hs (run the test cases)

©D. Poole 2024 CPSC 312 — Lecture 14 7 / 14

Minimax.hs

Clicker Question

argmax2 :: Ord v => (e -> v) -> [e] -> (e,v)

argmax2 f (h:t) =

foldr (\ e (et,vt) -> let fe = f e in

if (fe > vt) then (e,fe)

else (et,vt))

(h, f h) t

What is not true about this:

A argmax2 f lst returns a pair

B It computes f of each element exactly once

C It works for every list that type checks

D It takes the first element from the list to start the foldr

©D. Poole 2024 CPSC 312 — Lecture 14 8 / 14

Clicker Question

argmax2 :: Ord v => (e -> v) -> [e] -> (e,v)

argmax2 f (h:t) =

foldr (\ e (et,vt) -> let fe = f e in

if (fe > vt) then (e,fe)

else (et,vt))

(h, f h) t

If there are multiple elements with the same maximal value for the
function, what is returned?

A The first (e,v) pair that is maximal

B The last (e,v) pair that is maximal

C The second (e,v) pair that is maximal

D All of the (e,v) paris that are maximal

E The last (e,v) pair that is maximal, unless the first element is
maximal

©D. Poole 2024 CPSC 312 — Lecture 14 9 / 14

Improving Minimax

(a) Limit the depth of the tree, and have an evaluation function
estimate value of a node when search stops.

(b) learn (approximate from self-play or human play)
(i) State -> value function
(ii) valueact (Q-value)
(iii) State -> Action function (policy)

(c) Run it in parallel.

(d) Cache node values rather than recomputing.

(e) Exploit symmetry.

(f) Limit the width of the tree:
(i) Prune dominated nodes (alpha-beta pruning)
(ii) Sample random forward passes (Monte-Carlo tree search)

Deep Blue (beat world chess champion 1997): a, c, d, f i

AlphaGo (beat world Go champion 2016): bi, biii, c, f ii

©D. Poole 2024 CPSC 312 — Lecture 14 10 / 14

Improving Minimax

Try minimax with count game

:set +s

minimax (countGame 20 [1,2,3,5,7]) (State 0 [1,2,3,5,7])

minimax (countGame 21 [1,2,3,5,7]) (State 0 [1,2,3,5,7])

minimax (countGame 25 [1,2,3,5,7]) (State 0 [1,2,3,5,7])

minimax (countGame 30 [1,2,3,5,7]) (State 0 [1,2,3,5,7])

©D. Poole 2024 CPSC 312 — Lecture 14 11 / 14

Improving Minimax by caching results

Minimax could cache the values of states it has evaluated

A dictionary can be used to remember values

A dictionary maps a key to a value

Dict k v

is a dictionary with key type k and value type v

Dict Interface:

emptyDict :: Dict k v

getval :: (Ord k) => k -> Dict k v -> Maybe v

insertval :: (Ord k) => k -> v -> Dict k v

-> Dict k v

stats :: Dict t1 t2 -> [Char]

“abstract data type”

Minimax can use
Dict state (action,value)

©D. Poole 2024 CPSC 312 — Lecture 14 12 / 14

Binary Search Tree Implementation of Dictionary

A binary search tree can be used to implement a dictionary

data BSTree k v

= BSEmpty

| BSNode k v (BSTree k v) (BSTree k v)

deriving (Show)

– a binary search tree where k is the type of key, and v is type
of value

It can be made to follow the Dict API.

See TreeDict.hs

©D. Poole 2024 CPSC 312 — Lecture 14 13 / 14

TreeDict.hs

Clicker Question

data BSTree k v

= BSEmpty

| BSNode k v (BSTree k v) (BSTree k v)

What is not true:

A k is a type variable

B BSNode "Fun" 7 BSEmpty BSEmpty

is of type Num v => BSTree [Char] v

C BSTree is a function that takes 2 arguments

D When using the data structure, k needs to be resolved into an
actual type

E BSNode is a function that takes 4 arguments

©D. Poole 2024 CPSC 312 — Lecture 14 14 / 14

