
Announcements

“...there are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies and
the other way is to make it so complicated there are no obvious
deficiencies. The first method is far more difficult.”

— Tony Hoare, 1980 ACM Turing Award Lecture

©D. Poole 2024 CPSC 312 — Lecture 13 1 / 8

Review

type defines a type name as an abbreviation for other types

data defines new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

©D. Poole 2024 CPSC 312 — Lecture 13 2 / 8

Games

Players make actions

Games take actions and update state of game, perhaps
finishing.

A player, given state of game and what actions are available,
selects an action

A game: function from action and state into a result.
A result is either:
▶ End of game with result = value for player, (e.g., +1 for win,

0 for draw/tie, -1 for loss) and a new starting state, or
▶ Game continues with a new state

©D. Poole 2024 CPSC 312 — Lecture 13 3 / 8

Count Game

players take turns choosing numbers, e.g, in range [1..9]

if the sum of the numbers chosen exceeds some break value,
the player loses

What information does a state contain?

current count (sum of all values)

What Actions are available?

List of numbers not chosen.

See CountGame.hs Play.hs

©D. Poole 2024 CPSC 312 — Lecture 13 4 / 8

Game Abstraction

type Player = State -> Action

A player is given a state of the game and selects a move.

type Game = Action -> State -> Result

A game takes an action and the state and returns a result

Result is either
▶ the end of the game with a reward and starting state or
▶ a continue with a new state

data Result = EndOfGame Double State

| ContinueGame State

As part of the state is internal state and the available moves:

data State = State InternalState [Action]

Generic players should not make any assumptions about the
form of the internal state or the actions.

©D. Poole 2024 CPSC 312 — Lecture 13 5 / 8

Interacting with user (Play.hs)

Two mutually recursive functions:

person_play :: Game -> Result -> Player ->

TournammentState -> IO TournammentState

The person’s play: takes Game, the Result of the previous
play (the computer’s move, except initially), the computer
Player, and updates the tournament state

If the result (of previous move) is to continue, asks the person
for an action, computes result, then it’s the computer’s turn

If the result (of previous move) is the end of the game, the
value of the result is the value for the computer, and so needs
to be negated for the person. Start again.

computer_play :: Game -> Result -> Player ->

TournammentState -> IO TournammentState

Similar except, it calls the Player to get the next action.
No negation needed.

©D. Poole 2024 CPSC 312 — Lecture 13 6 / 8

Minimax

For two-player zero-sum games – the value for one player is the
negation of the value of the other player – the optimal strategy can
be computed using:

At the end of the game, the result provides the value for the
player that ended the game.

When an action is chosen, the value for that player is the
negation of value for the opposing player of the resulting state.

An agent gets to choose the action with the maximum value
for them.

Use functional definition of a game to simulate game

Select move with best evaluation function
..... then it’s the opponents turn to select their best move
..... until end of game

©D. Poole 2024 CPSC 312 — Lecture 13 7 / 8

Minimax

type Game = Action -> State -> Result

The game can be asked hypothetical questions about the
result of a move. (Because it is functional.)
A game has a value for each player at the end of the game.
Assumes a two-player zero-sum game:
The value for a player is the negative of the value of the
opponent.
minimax:: Game -> State -> (Action, Double)

valueact :: Game -> State -> Action -> Double

value:: Game -> Result -> Double

Minimax takes game and a state and returns (action,value)
for the best move for agent playing,
assuming a move is available
type Player = State -> Action

mm_player:: Game -> Player

mm_player game state = fst (minimax game state)

See Minimax.hs (run the test cases at bottom)
©D. Poole 2024 CPSC 312 — Lecture 13 8 / 8

Minimax.hs

