
Announcements

Project proposals due by at start of next week. Talk to a TA!

“Pascal [Java] is for building pyramids Lisp [Haskell] is for
building organisms – The organizing principles used are the
same in both cases, except for one extraordinarily important
difference: . . . Lisp programs inflate libraries with functions whose
utility transcends the application that produced them. In Pascal
the plethora of declarable data structures induces a specialization
within functions that inhibits and penalizes casual cooperation.

– Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 12 1 / 1

Review

type defines a type name as an abbreviation for other types

data defines new new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

instance puts types into classes

©D. Poole 2024 CPSC 312 — Lecture 12 2 / 1

How to write a (Haskell) Program

To solve a complex problem, break it into simpler problems.
Motivate/design top-down
Build bottom-up.
Write a clear specification (API / intended interpretation) for
each component; program to that specification.
Ensure each part is modular, debuggable, with clear meaning.
Test early and test often. Try to break your program.
Try to prove your program is correct.
Test every function when defined. Every component of a
function should be already tested and debugged before use.
Give the type signature for every function (so the compiler
does not suggest bugs in tested code).
Generalize components so they are as reusable as possible.
Make sure you can find a previously written appropriate
function when it is the one you want.
Write functional components as much as possible.
Try to minimize IO components.
(So it is easier to debug, check correctness,..)

©D. Poole 2024 CPSC 312 — Lecture 12 3 / 1

Games (MagicSum.hs, Play.hs)

Turn-taking 2-player games with win/lose/draw at the end:

Players make actions

Games take actions and update state of game, perhaps
finishing.

A player, given state of game, and a list of legal actions,
selects an action

A game: function from action and state into a result.
A result is either:
▶ End of game with result = value for player, (e.g., +1 for win,

0 for draw/tie, -1 for loss) and a new starting state, or
▶ Game continues with a new state

©D. Poole 2024 CPSC 312 — Lecture 12 4 / 1

Game Abstraction (See MagicSum.hs Play.hs)

A player is given a state of the game and selects a move.
type Player = State -> Action

A game takes an action and the state and returns a result
type Game = Action -> State -> Result

Result is either
▶ the end of the game with a reward and starting state or
▶ a continue with a new state

data Result = EndOfGame Double State

| ContinueGame State

As part of the state is internal state and the available moves:

data State = State InternalState [Action]

©D. Poole 2024 CPSC 312 — Lecture 12 5 / 1

Magic Sum Game

players take turns choosing different numbers in range [0..9]

first player to have 3 numbers that sum to 15 wins

draw/tie if run out of numbers to play

What common game is this equivalent to?

Magic square:

2 7 6

9 5 1

4 3 8

Magic sum game is isomorphic to tic-tac-toe.

©D. Poole 2024 CPSC 312 — Lecture 12 6 / 1

Magic Sum Game

players take turns choosing different numbers in range [0..9]

first player to have 3 numbers that sum to 15 wins

draw/tie if run out of numbers to play

What information does a state contain?

(Numbers chosen by self, numbers chosen by opponent)

What Actions are available?

List of numbers not chosen.

©D. Poole 2024 CPSC 312 — Lecture 12 7 / 1

Clicker Question

type Action = Int

data State = State ([Action],[Action]) [Action]

deriving (Eq, Show)

data Result = EndOfGame Double State

| ContinueGame State

deriving (Eq, Show)

What is not true:

A State is both a type and a constructor

B We can compare States with ==

C EndOfGame is a function of type
Double -> State -> Result

D State([1],[])[4] == ContinueGame(State([1],[])[4])

returns False

E ContinueGame (State a b) can be used on the left side
of an equality

©D. Poole 2024 CPSC 312 — Lecture 12 8 / 1

Clicker Question

type Action = Int

data State = State ([Action],[Action]) [Action]

deriving (Eq, Show)

data Result = EndOfGame Double State

| ContinueGame State

deriving (Eq, Show)

What happens if the third line is removed?

A Nothing as long as we don’t compare or show states

B It gives a compile-time error as Result then cannot be in Eq or
Show

C It gives a run-time error if a state is compared or shown

D The proof of Show and Eq will loop forever

©D. Poole 2024 CPSC 312 — Lecture 12 9 / 1

Minimax

type Game = Action -> State -> Result

The game can be asked hypothetical questions about the
result of a move. (Because it is functional.)
A game has a value for each player at the end of the game.
Assumes a two-player zero-sum game:
The value for a player is the negative of the value of the
opponent.
minimax:: Game -> State -> (Action, Double)

valueact :: Game -> State -> Action -> Double

value:: Game -> Result -> Double

Minimax takes game and a state and returns (action,value)
for the best move for agent playing,
assuming a move is available
type Player = State -> Action

mm_player:: Game -> Player

mm_player game state = fst (minimax game state)

See Minimax.hs (run the test cases at bottom)
©D. Poole 2024 CPSC 312 — Lecture 12 10 / 1

Minimax.hs

Minimax

Use functional definition of a game to simulate game

Select move with best evaluation function
..... then it’s the opponents turn to select their best move
..... until end of game

©D. Poole 2024 CPSC 312 — Lecture 12 11 / 1

