Announcements

@ Project proposals due by at start of next week. Talk to a TA!

“Pascal [Java] is for building pyramids Lisp [Haskell] is for
building organisms — The organizing principles used are the
same in both cases, except for one extraordinarily important
difference: ... Lisp programs inflate libraries with functions whose
utility transcends the application that produced them. In Pascal
the plethora of declarable data structures induces a specialization
within functions that inhibits and penalizes casual cooperation.

— Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 12 1/1

Review

@ type defines a type name as an abbreviation for other types

@ data defines new new data structures (and a type) and
constructors / deconstuctors

@ I0 t is the input/output monad
@ do can be used to sequence input/output operations

@ instance puts types into classes

©D. Poole 2024 CPSC 312 — Lecture 12 2/1

How to write a (Haskell) Program

To solve a complex problem, break it into simpler problems.

Motivate/design top-down

Build bottom-up.

Write a clear specification (APl / intended interpretation) for

each component; program to that specification.

Ensure each part is modular, debuggable, with clear meaning.

@ Test early and test often. Try to break your program.

Try to prove your program is correct.

@ Test every function when defined. Every component of a
function should be already tested and debugged before use.

@ Give the type signature for every function (so the compiler
does not suggest bugs in tested code).

@ Generalize components so they are as reusable as possible.
Make sure you can find a previously written appropriate
function when it is the one you want.

@ Write functional components as much as possible.

Try to minimize 10 components.
©D. Poole 2024 CPSC 312 — Lecture 12 3/1

Games (MagicSum.hs, Play.hs)

Turn-taking 2-player games with win/lose/draw at the end:
@ Players make actions
@ Games take actions and update state of game, perhaps
finishing.
@ A player, given state of game, and a list of legal actions,
selects an action
@ A game: function from action and state into a result.

A result is either:

» End of game with result = value for player, (e.g., +1 for win,
0 for draw/tie, -1 for loss) and a new starting state, or
» Game continues with a new state

©D. Poole 2024 CPSC 312 — Lecture 12 4/1

Game Abstraction (See MagicSum.hs Play.hs)

@ A player is given a state of the game and selects a move.
type Player = State -> Action

@ A game takes an action and the state and returns a result
type Game = Action -> State -> Result
@ Result is either

> the end of the game with a reward and starting state or
» a continue with a new state

data Result = EndOfGame Double State
| ContinueGame State

@ As part of the state is internal state and the available moves:
data State = State InternalState [Action]

©D. Poole 2024 CPSC 312 — Lecture 12 5/1

Magic Sum Game

@ players take turns choosing different numbers in range [0..9]
o first player to have 3 numbers that sum to 15 wins
e draw/tie if run out of numbers to play

What common game is this equivalent to?

21716
Magic square: 9 | 5|1
4138

Magic sum game is isomorphic to tic-tac-toe.

©D. Poole 2024 CPSC 312 — Lecture 12 6/1

Magic Sum Game

@ players take turns choosing different numbers in range [0..9]
o first player to have 3 numbers that sum to 15 wins
e draw/tie if run out of numbers to play
What information does a state contain?
@ (Numbers chosen by self, numbers chosen by opponent)
What Actions are available?

@ List of numbers not chosen.

©D. Poole 2024 CPSC 312 — Lecture 12 7/1

Clicker Question

type Action = Int
data State = State ([Action], [Action]) [Action]
deriving (Eq, Show)
data Result = EndOfGame Double State
| ContinueGame State
deriving (Eq, Show)
What is not true:
A State is both a type and a constructor
B We can compare States with ==
C EndOfGame is a function of type
Double -> State —-> Result
D state([1],[])[4] == ContinueGame(State([1], [1) [4])
returns False
E ContinueGame (State a b) can be used on the left side
of an equality

©D. Poole 2024 CPSC 312 — Lecture 12 8/1

Clicker Question

type Action = Int
data State = State ([Action], [Action]) [Action]
deriving (Eq, Show)
data Result = EndOfGame Double State
| ContinueGame State
deriving (Eq, Show)
What happens if the third line is removed?
A Nothing as long as we don’t compare or show states

B It gives a compile-time error as Result then cannot be in Eq or
Show

C It gives a run-time error if a state is compared or shown

D The proof of Show and Eq will loop forever

©D. Poole 2024 CPSC 312 — Lecture 12 9/1

Minimax

@ type Game = Action -> State -> Result
The game can be asked hypothetical questions about the
result of a move. (Because it is functional.)
@ A game has a value for each player at the end of the game.
@ Assumes a two-player zero-sum game:
The value for a player is the negative of the value of the

opponent.
@ minimax:: Game -> State -> (Action, Double)
valueact :: Game -> State -> Action -> Double

value:: Game -> Result -> Double
@ Minimax takes game and a state and returns (action,value)
for the best move for agent playing,
assuming a move is available
@ type Player = State -> Action
@ mm_player:: Game -> Player
mm_player game state = fst (minimax game state)

@ See Minimax.hs (run the test cases at bottom
©D. Poole 2024 CPSC 312 — Lecture 12 10/1

Minimax.hs

Minimax

@ Use functional definition of a game to simulate game

@ Select move with best evaluation function
..... then it's the opponents turn to select their best move
..... until end of game

©D. Poole 2024 CPSC 312 — Lecture 12 1/1

