
“Pascal [Java] is for building pyramids – imposing, breathtaking,
static structures built by armies pushing heavy blocks into place.
Lisp [Haskell] is for building organisms – imposing, breathtaking,
dynamic structures built by squads fitting fluctuating myriads of
simpler organisms into place.
. . .
the pyramid must stand unchanged for a millennium; the organism
must evolve or perish.”

– Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 11 1 / 8



Review

type defines a type name as an abbreviation for other types

data defines new new data structures (and a type) and
constructors / deconstuctors

IO t is the input/output monad

do can be used to sequence input/output operations

©D. Poole 2024 CPSC 312 — Lecture 11 2 / 8



Input-Output (IOAdder.hs, IOAdder2.hs)

IO t is a type for input and output

type IO t = World -> (t,World)

See putChar, getChar, getLine, putStr

These are normal functions:

ask_polite q = ask (q++" please ")

These can be sequenced using do.

do v1 <- a1

v2 <- a2

...

vn <- an

return (f v1 ... vn)

Each ai is of type IO ti for some type ti
vi is of type ti
ai gets world from ai−1, gives value to vi and world to ai+1

When called from prompt, a1 gets world from system.

Type of do expression is IO t where t is return type of f

©D. Poole 2024 CPSC 312 — Lecture 11 3 / 8



Putting types into classes (BSTree2.hs)

Show is the class that contains the function:

show :: Show a => a -> String

Read is the class that contains the function:

read :: Read a => String -> a

To get a default implementation of show and read, we can
do:

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

deriving (Show, Read)

Most predefined types – except for functions — are in Show
and Read.

©D. Poole 2024 CPSC 312 — Lecture 11 4 / 8



Putting types into classes

A class defines the set of functions defined for types in the
class.

You can see the functions for a class by doing:

:info Classname

in ghci.

To put a type into a class do:

instance Class Type where

<define the minimal functions for the class>

See Instanceeg.hs

©D. Poole 2024 CPSC 312 — Lecture 11 5 / 8



Putting types into classes (BSTree2.hs)

Eq is the class that contains the functions

(/=) :: Eq a => a -> a -> Bool

(==) :: Eq a => a -> a -> Bool

If we don’t want the default definitions we can declare
(BSTree k v) to be an instance of the Eq class:

instance (Eq k,Eq v) => Eq (BSTree k v) where

t1 == t2 = tolist t1 == tolist t2

as long as k and v are in the Eq class.

fmap is a generalization of map defined for any type in the
Functor class. We can define the fmap on the values by:

instance Functor (BSTree k) where

-- fmap :: (a -> b) -> BSTree k a -> BSTree k b

fmap f Empty = Empty

fmap f (Node key val t1 t2)

= Node key (f val) (fmap f t1) (fmap f t2)

©D. Poole 2024 CPSC 312 — Lecture 11 6 / 8



Putting types into classes (BSTree2.hs)

Putting BSTree into foldable class:

instance Foldable (BSTree k) where

foldr op base tree

= foldr op base [v | (k,v) <- (tolist tree)]

This automatically defines: sum, foldl, null, length . . .

:info Foldable

Using a default defintion of Foldable:

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

deriving (Show, Read, Foldable)

©D. Poole 2024 CPSC 312 — Lecture 11 7 / 8



How to write a (Haskell) Program

To solve a complex problem, break it into simpler problems.
Motivate/design top-down
Build bottom-up.
Write a clear specification (API / intended interpretation) for
each component; program to that specification.
Ensure each part is modular, debuggable, with clear meaning.
Test early and test often. Try to break your program.
Try to prove your program is correct.
Test every function when defined. Every component of a
function should be already tested and debugged before use.
Give the type signature for every function (so the compiler
does not suggest bugs in tested code).
Generalize components so they are as reusable as possible.
Make sure you can find a previously written appropriate
function when it is the one you want.
Write functional components as much as possible.
Try to minimize IO components.
(So it is easier to debug, check correctness,..)

©D. Poole 2024 CPSC 312 — Lecture 11 8 / 8


