“Pascal [Java] is for building pyramids — imposing, breathtaking,
static structures built by armies pushing heavy blocks into place.
Lisp [Haskell] is for building organisms — imposing, breathtaking,
dynamic structures built by squads fitting fluctuating myriads of
simpler organisms into place.

the pyramid must stand unchanged for a millennium; the organism
must evolve or perish.”

— Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 11 1/8



Review

o type defines a type name as an abbreviation for other types

e data defines new new data structures (and a type) and
constructors / deconstuctors

@ I0 t is the input/output monad

@ do can be used to sequence input/output operations

©D. Poole 2024 CPSC 312 — Lecture 11 2/8



Input-Output (IOAdder.hs, IOAdder2.hs)

I0 t is a type for input and output
type I0 t = World -> (t,World)
See putChar, getChar, getLine, putStr

These are normal functions:

ask_polite q = ask (q++" please ")
@ These can be sequenced using do.

do vl <- al

v2 <- a2
vn <- an
return (f vl ... vn)

Each ai is of type I0 ti for some type ti
vi is of type ti
ai gets world from a;_1, gives value to v; and world to aj;1
@ When called from prompt, a; gets world from system.
@ Type of do expressionis I0 t where tis return type of f

©D. Poole 2024 CPSC 312 — Lecture 11 3/8



Putting types into classes (BSTree2.hs)

@ Show is the class that contains the function:
show :: Show a => a -> String
@ Read is the class that contains the function:
read :: Read a => String -> a

@ To get a default implementation of show and read, we can
do:

data BSTree k v = Empty
| Node k v (BSTree k v) (BSTree k v)
deriving (Show, Read)

@ Most predefined types — except for functions — are in Show
and Read.

©D. Poole 2024 CPSC 312 — Lecture 11 4/8



Putting types into classes

@ A class defines the set of functions defined for types in the
class.

@ You can see the functions for a class by doing:
:info Classname
in ghci.

@ To put a type into a class do:

instance Class Type where
<define the minimal functions for the class>

@ See Instanceeg.hs

©D. Poole 2024 CPSC 312 — Lecture 11 5/8



Putting types into classes (BSTree2.hs)

@ Eq is the class that contains the functions
(/=) :: Eq a => a -> a -> Bool
(==) :: Eq a => a -> a -> Bool

o If we don’t want the default definitions we can declare
(BSTree k v) to be an instance of the Eq class:
instance (Eq k,Eq v) => Eq (BSTree k v) where

tl == t2 = tolist tl == tolist t2
as long as k and v are in the Eq class.

@ fmap is a generalization of map defined for any type in the
Functor class. We can define the fmap on the values by:
instance Functor (BSTree k) where

-— fmap :: (a -> b) -> BSTree k a -> BSTree k b
fmap f Empty = Empty
fmap f (Node key val t1 t2)

= Node key (f val) (fmap f t1) (fmap f t2)

©D. Poole 2024 CPSC 312 — Lecture 11 6/8



Putting types into classes (BSTree2.hs)

Putting BSTree into foldable class:

instance Foldable (BSTree k) where
foldr op base tree
= foldr op base [v | (k,v) <- (tolist tree)]

This automatically defines: sum, foldl, null, length ...
:info Foldable
Using a default defintion of Foldable:

data BSTree k v = Empty
| Node k v (BSTree k v) (BSTree k v)
deriving (Show, Read, Foldable)

©D. Poole 2024 CPSC 312 — Lecture 11 7/8



How to write a (Haskell) Program

To solve a complex problem, break it into simpler problems.

Motivate/design top-down

Build bottom-up.

Write a clear specification (APl / intended interpretation) for

each component; program to that specification.

Ensure each part is modular, debuggable, with clear meaning.

@ Test early and test often. Try to break your program.

Try to prove your program is correct.

@ Test every function when defined. Every component of a
function should be already tested and debugged before use.

@ Give the type signature for every function (so the compiler
does not suggest bugs in tested code).

@ Generalize components so they are as reusable as possible.
Make sure you can find a previously written appropriate
function when it is the one you want.

@ Write functional components as much as possible.

Try to minimize 10 components.
©D. Poole 2024 CPSC 312 — Lecture 11 8/8



