
“Pascal [Java] is for building pyramids – imposing, breathtaking,
static structures built by armies pushing heavy blocks into place.
Lisp [Haskell] is for building organisms – imposing, breathtaking,
dynamic structures built by squads fitting fluctuating myriads of
simpler organisms into place.
. . .
the pyramid must stand unchanged for a millennium; the organism
must evolve or perish.”

– Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 10 1 / 13



The plan going forward

This week: input-output, algebraic data types

Assignment 3 due next week provides some templates for
possible projects (algebraic types, reading files, user
interaction)

Project (groups of 2 or 3):
▶ Proposal: 12 February
▶ Final Project Due: 26 February
▶ Project Demos: 27 Feb - March 4 (by appointment with TAs)

In class: worked examples (games in Haskell)

Midterm 2 on 26 February

Then Logic Programming!!

©D. Poole 2024 CPSC 312 — Lecture 10 2 / 13



Some Representative Survey Feedback

I dislike:
How much I need to google to complete the assignments
Up until now, the course focus a lot on the theory side
Trying to understand how to code by watching someone else
We go through the iclicker answers very quickly.
Topics build on each ther very fast and it feels like sometimes
there isn’t enough time to solidify the groundwork.
Nothing, I beleive the way the course is taught right now is
perfect and is helping me learn a lot
It sometimes is too slow.
The pace of the lectures, seems a bit quick sometimes
I wish:
to learn more applications of Haskell or any functional in real
world settings (not only theory).
I wish the midterm is really easy and I do well in this course :)
I wish the answers to the clickers on the slides are posted
somewhere

©D. Poole 2024 CPSC 312 — Lecture 10 3 / 13



Input-Output (see IOAdder.hs)

IO t is a type that does input output

Output putChar, putStr, putStrLn

Input getChar, getLine

Do:

do v1 <- a1

v2 <- a2

...

vn <- an

return (f v1 v2 ... vn)

Evaluates each ai in turn, save value in vi
vi <- is optional if you don’t want to save
returns value of (f v1 v2 ... vn)

do could end with calling another function that has a return

©D. Poole 2024 CPSC 312 — Lecture 10 4 / 13



Input-Output (see IOAdder2.hs)

IO t is a type for input and output

type IO t = World -> (t,World)

where World contains information about state of world.

do v1 <- a1

...

vn <- an

return (f v1 ... vn)

Each ai is of type IO ti for some type ti
vi is of type ti
ai gets world from ai−1, gives value to vi and world to ai+1

Type of do expression is IO t where t is return type of f

To define a new value use
let v = exp

where type of v is type of exp

©D. Poole 2024 CPSC 312 — Lecture 10 5 / 13



Return

IO t is a type for input and output

type IO t = World -> (t,World)

where World contains information about state of world.

do v1 <- a1

...

vn <- an

return (f v1 ... vn)

returns (v,world) where v is value of (f v1 ... vn)

How is return defined?

return v world = (v,world)

which is returned as the value for do.
Value of v is printed in interactive mode.

IO is a monad.

©D. Poole 2024 CPSC 312 — Lecture 10 6 / 13



Clicker Question

Consider the program:

foo =

do

putStrLn("Test in foo")

return (3 :: Integer)

What is the type of foo?

A foo :: [Char]

B foo :: IO [Char]

C foo :: Integer

D foo :: IO Integer

See TestDo.hs

©D. Poole 2024 CPSC 312 — Lecture 10 7 / 13



Clicker Question

Consider the program:

foo =

do

putStrLn("Test in foo")

return 3

What output from evaluating foo in ghci?

A Test in foo

3

B 3

Test in foo

C 3

D "Test in foo"

©D. Poole 2024 CPSC 312 — Lecture 10 8 / 13



Clicker Question

foo =

do

putStrLn("Test in foo")

return (3 :: Integer)

bar =

do

putStrLn("Test in bar")

v <- foo

putStrLn ("v is "++show v)

return ("v^3 is "++show (v^3))

What is the inferred type of bar?

A bar :: [Char]

B bar :: IO [Char]

C bar :: Integer

D bar :: IO Integer

See TestDo.hs
©D. Poole 2024 CPSC 312 — Lecture 10 9 / 13



Clicker Question

foo = do

putStrLn("Test in foo")

return 3

bar = do

putStrLn("Test in bar")

v <- foo

w <- v+7 ---this line---

putStrLn ("v is "++show v)

return ("v^3 is "++show (v^3))

This given an error with ---this line--- included, but not with
it removed. Why?

A v is not a number and so cannot be added to 7

B v+7 is a Num type, not of type IO t

C w is not used in the rest of the definition

D ---this line--- is illegal at the end of the line

©D. Poole 2024 CPSC 312 — Lecture 10 10 / 13



Clicker Question

foo = do

putStrLn("Test in foo")

return 3

bar2 = do

putStrLn("Test in bar")

v <- foo

w <- 7

putStrLn ("v is "++show v)

return ("v^3 is "++show (v^3))

What error message does Haskell produce

A No instance for (Show a0) arising from a use of ’print’
B Runtime error: ’7’ is not an IO t0

C You are not allowed to have ’w <- 7’ in a ’do’

D No instance for (Num (IO t0)) arising from the literal ’7’
E parse error (possibly incorrect indentation or mismatched

brackets)
©D. Poole 2024 CPSC 312 — Lecture 10 11 / 13



Clicker Question

foo = do

putStrLn("Test in foo")

return 3

bar3 = do

putStrLn("Test in bar")

v <- foo

w <- v

return ("v^2 is "++show (v^2))

Why does Haskell produce the error:

No instance for (Num (IO t0)) arising from the literal ’3’

A It is a typo; it should say w <- v is wrong

B It is possible that w <- v is legal expression if v is of type
(IO t0) but v must also be in the class Num

C The error messages are designed to be confusing

D “return 3” is illegal in foo

©D. Poole 2024 CPSC 312 — Lecture 10 12 / 13



Clicker Question

afun :: IO Int

afun =

do

aaa <- return 5

return (aaa+4)

What does ghci print when afun is called:

A 5

B 9

C 5
9

D It gives a compilation error.

E It gives a run time error.

©D. Poole 2024 CPSC 312 — Lecture 10 13 / 13


