
“I think that it’s extraordinarily important that we in computer
science keep fun in computing. When it started out, it was an
awful lot of fun. Of course, the paying customers got shafted every
now and then, and after a while we began to take their complaints
seriously. We began to feel as if we really were responsible for the
successful, error-free perfect use of these machines. I don’t think
we are. I think we’re responsible for stretching them, setting them
off in new directions and keeping fun in the house. I hope the field
of computer science never loses its sense of fun.”

– Alan J. Perlis, 1977 (quoted in dedication to “Structure and
Interpretation of Computer Programs”, 1985)

©D. Poole 2024 CPSC 312 — Lecture 9 1 / 9

Review

Haskell is a functional programming language

Strongly typed, but with type inference

Bool
Num, Int, Integer, Fractional, Floating, Double
Eq, Ord
Tuple, List, Function

Classes, type variables

List comprehension [f x | x<-list, cond x]

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

foldl ⊕ v [a1, a2, ..an] = (((v ⊕ a1)⊕ a2)⊕ ...)⊕ an

reduction

call-by-value, call-by-name, lazy evaluation

type, data

©D. Poole 2024 CPSC 312 — Lecture 9 2 / 9

Type and data

data defines new data structures (and a type)
Example:

data FValue = BooleanF Bool

| NumberF Int

| StringF [Char]

| MissingF

defines
▶ a new type: FValue
▶ 4 new constructors: BooleanF , NumberF , StringF , MissingF .

The constructors have dual roles:
▶ constructors with arguments give functions that can create a

new value of that type
▶ constructors with no arguments are constants
▶ constructors can be used patterns for deconstructing the type

(accessors) on left side of = or in function definitions.

©D. Poole 2024 CPSC 312 — Lecture 9 3 / 9

Clicker Question

Suppose the function

myfun Toves = 7

myfun (Slithy x) = x+2

has inferred type

myfun :: Gyre -> Integer

and compiles and never gives a runtime error. Which is not true:

A Gyre is a type

B Slithy is a function of type Integer -> Gyre

C Toves is a constant of type Gyre

D There must be a declaration

data Gyre = Toves

| Slithy Integer

E One of the above is false.
(So if all A-D are true, this is the answer.)

©D. Poole 2024 CPSC 312 — Lecture 9 4 / 9

Recursive data types (BSTree2.hs)

data definitions can be recursive: Example:

-- a binary search tree that maps integers to strings

data BSTree = Empty

| Node Int String BSTree BSTree

defines a new type, BSTree, and two new constructors Empty
and Node.

The constructors can be used as
▶ constants (Empty) or functions (Node) to create a BSTree
▶ patterns for deconstructing the type

The data structures can be parametrized by types:

-- a binary search tree

-- k is the key type; v is the value type

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

©D. Poole 2024 CPSC 312 — Lecture 9 5 / 9

data (BSTree2.hs)

A binary search tree:

-- a binary search tree

-- k is the key type; v is the value type

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

What should lookup key tree return?
What if the key isn’t in the tree?

How can insert key value tree also return the old value
of key?
What if there wasn’t an old value?

©D. Poole 2024 CPSC 312 — Lecture 9 6 / 9

Putting types into classes (BSTree2.hs)

Show is the class that contains the function:

show :: Show a => a -> String

Read is the class that contains the function:

read :: Read a => String -> a

To get a default implementation of show and read, we can
do:

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

deriving (Show, Read)

Most predefined types – except for functions — are in Show
and Read.

©D. Poole 2024 CPSC 312 — Lecture 9 7 / 9

Putting types into classes (BSTree2.hs)

Eq is the class that contains the functions

(/=) :: Eq a => a -> a -> Bool

(==) :: Eq a => a -> a -> Bool

If we don’t want the default definitions we can declare
(BSTree k v) to be an instance of the Eq class:

instance (Eq k,Eq v) => Eq (BSTree k v) where

t1 == t2 = tolist t1 == tolist t2

as long as k and v are in the Eq class.

fmap is a generalization of map defined for any type in the
Functor class. We can define the fmap on the values by:

instance Functor (BSTree k) where

-- fmap :: (a -> b) -> BSTree k a -> BSTree k b

fmap f Empty = Empty

fmap f (Node key val t1 t2)

= Node key (f val) (fmap f t1) (fmap f t2)

©D. Poole 2024 CPSC 312 — Lecture 9 8 / 9

Putting types into classes (BSTree2.hs)

Putting BSTree into foldable class:

instance Foldable (BSTree k) where

foldr op base tree

= foldr op base [v | (k,v) <- (tolist tree)]

This also defines: sum, foldl, null, length....
See

:info Foldable

Using a default defintion:

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

deriving (Show, Read, Foldable)

©D. Poole 2024 CPSC 312 — Lecture 9 9 / 9

