
“I think that it’s extraordinarily important that we in computer
science keep fun in computing. When it started out, it was an
awful lot of fun. Of course, the paying customers got shafted every
now and then, and after a while we began to take their complaints
seriously. We began to feel as if we really were responsible for the
successful, error-free perfect use of these machines. I don’t think
we are. I think we’re responsible for stretching them, setting them
off in new directions and keeping fun in the house. I hope the field
of computer science never loses its sense of fun.”

– Alan J. Perlis, 1977 (quoted in dedication to “Structure and
Interpretation of Computer Programs”, 1985)

©D. Poole 2023 CPSC 312 — Lecture 8 1 / 15

Announcements

Midterm #1 next Monday.
▶ You can write your personalized exam in class time or in any

50 minutes in the 24 hours before the end of the exam.
▶ Open-book. You can use Google and ghci. (But won’t help ;)
▶ All predefined functions you can use will be described (type

and their API).
▶ A practice (previous) exam is on course web page.

©D. Poole 2023 CPSC 312 — Lecture 8 2 / 15

Review

Haskell is a functional programming language

Strongly typed, but with type inference

Bool
Num, Int, Integer, Fractional, Floating, Double
Eq, Ord
Tuple, List, Function

Classes, type variables

List comprehension [f x | x<-list, cond x]

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

foldl ⊕ v [a1, a2, ..an] = (((v ⊕ a1)⊕ a2)⊕ ...)⊕ an

reduction

Call by value, call by name, lazy evaluation

©D. Poole 2023 CPSC 312 — Lecture 8 3 / 15

Computing Fibonacci numbers (super fast(?))

Naive Fibonacci n takes time exponential in n.
Fast Fibonacci n takes time linear in n
Can we compute the Fibonacci n in time logarithmic in n?(

1 1
1 0

)(
fn
fn−1

)
=

(
fn + fn−1

fn

)
(

fn
fn−1

)
=

(
1 1
1 0

)n (
1
0

)
We can compute xn in logarithmic time....
see Lazy.hs

©D. Poole 2023 CPSC 312 — Lecture 8 4 / 15

Type

type defines a type name as an abbreviation for other types

Example:

type String = [Char]

Example matrices and matrix multiplication:

type Matrix = Int -> Int -> Integer

mm:: Matrix -> Matrix -> Matrix

©D. Poole 2023 CPSC 312 — Lecture 8 5 / 15

Types

type can be parametrized by type variables.

Example

type Matrix t = Int -> Int -> t

mm:: Num t => Matrix t -> Matrix t -> Matrix t

-- m1110 is a particular 2x2 matrix

m1110 :: Matrix Integer

m1110 2 2 = 0

m1110 _ _ = 1

The mathematical definition of matrix multiplication:

mm:: Num t => Matrix t -> Matrix t -> Matrix t

mm m1 m2 i j = sum [(m1 i k)*(m2 k j) | k <- [1..size]]

size = 2

(see Lazy.hs)

©D. Poole 2023 CPSC 312 — Lecture 8 6 / 15

data

data defines new data structures (and a type). Example:

data APerson = Person String Int

defines
▶ a new type: APerson
▶ a constructor: Person

The constructors have dual roles:
▶ constructors with arguments can be used as functions

sam = Person "Sam" 27 is object of type APerson
▶ constructors with no arguments are constants
▶ constructors can be used patterns for deconstructing the type

(accessors) on left side of = or in function definitions.

showPerson (Person name age) = name ++ show age

©D. Poole 2023 CPSC 312 — Lecture 8 7 / 15

data (cont). (Dataeg.hs)

data definitions can be recursive:

data MyListInteger =

Empty

| ConsI Integer MyListInteger

deriving Show

defines

a new type: MyListInteger
2 new constructors: Empty, ConsI
defines show :: MyListInteger -> String

Constructors can be used to define entities of the type:
ConsI 27 Empty is a list of 1 elements
ConsI 234 (ConsI 27 Empty) is a list of 2 elements
constructors can be used patterns for deconstructing the type
(accessors) on left side of = or in function definitions.

myApp Empty lst = lst

myApp (ConsI h t) lst = ConsI h (myApp t lst)
©D. Poole 2023 CPSC 312 — Lecture 8 8 / 15

Type and data (Dataeg.hs)

data FValue = BooleanF Bool

| NumberF Int

| StringF [Char]

| MissingF

defines

a new type: FValue

4 new constructors: BooleanF , NumberF , StringF , MissingF .

©D. Poole 2023 CPSC 312 — Lecture 8 9 / 15

Clicker Question

Given

data MD = Fun Int

| Bar

Which of the following is a type?

A MD

B Fun, Bar

C MD, Fun, Bar

D Fun

©D. Poole 2023 CPSC 312 — Lecture 8 10 / 15

Clicker Question

Given

data MD = Fun Int

| Bar

Which of the following is a function?

A MD

B Fun, Bar

C MD, Fun, Bar

D Fun

©D. Poole 2023 CPSC 312 — Lecture 8 11 / 15

Clicker Question

Given

data MD = Fun Int

| Bar

Consider the following

(i) Fun 34

(ii) Bar

(iii) 57

(iv) MD Fun Bar

Which define an expression of type MD?

A (i) and (ii)

B (iii)

C (i), (ii), (iii)

D (iv)

E All of them
©D. Poole 2023 CPSC 312 — Lecture 8 12 / 15

Parameterized types

In the Prelude is the definition:

data Maybe t = Nothing

| Just t

t is a type variable. Just as in [t].

Maybe t is a type for all types t.

It is useful when a function is partial and doesn’t always
return a value.

©D. Poole 2023 CPSC 312 — Lecture 8 13 / 15

Clicker Question

In the Prelude is the definition:

data Maybe t = Nothing

| Just t

Which of the following not true:

A Maybe Int is a type

B Nothing and Just are both functions of type Maybe

C Nothing is a constant of type Maybe t for all types t

D Just has type
Just :: a -> Maybe a

©D. Poole 2023 CPSC 312 — Lecture 8 14 / 15

Recursive data types (BSTree.hs)

data definitions can be recursive: Example:

-- a binary search tree that maps integers to strings

data BSTree = Empty

| Node Int String BSTree BSTree

defines a new type, BSTree, and two new constructors Empty
and Node.

The constructors can be used as
▶ constants (Empty) or functions (Node) to create a BSTree
▶ patterns for deconstructing the type

The data structures can be parametrized by types:

-- a binary search tree

-- k is the key type; v is the value type

data BSTree k v = Empty

| Node k v (BSTree k v) (BSTree k v)

©D. Poole 2023 CPSC 312 — Lecture 8 15 / 15

