
Announcements

Midterm #1 next Monday. More details to follow.

“A computer is like a violin. You can imagine a novice trying
first a phonograph and then a violin. The latter, he says,
sounds terrible. Computer programs are good, [some] say, for
particular purposes, but they aren’t flexible. Neither is a
violin, or a typewriter, until you learn how to use it.”

– Marvin Minsky, “Why Programming Is a Good Medium for
Expressing Poorly-Understood and Sloppily-Formulated

Ideas”, 1967

©D. Poole 2024 CPSC 312 — Lecture 7 1 / 15

Review

Haskell is a functional programming language

Strongly typed, but with type inference

Bool
Num, Int, Integer, Fractional, Floating, Double
Eq, Ord
Tuple, List, Function

Classes, type variables

List comprehension [f x | x<-list, cond x]

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

foldl ⊕ v [a1, a2, ..an] = (((v ⊕ a1)⊕ a2)⊕ ...)⊕ an

©D. Poole 2024 CPSC 312 — Lecture 7 2 / 15

Clicker Question

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

Given

ml = foldr (\ x y -> y+1) 0

what is the result of

ml [10,11,12,13,14,15]

A [11,12,13,14,15,16]

B 6

C 11

D [True,True,True,True,True,False]

E It gives a type error

©D. Poole 2024 CPSC 312 — Lecture 7 3 / 15

Clicker Question

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

Given

bar = foldr (\ x y -> x+1) 0

what is the result of

bar [10,11,12,13,14,15]

A [11,12,13,14,15,16]

B 6

C 11

D [True,True,True,True,True,False]

E It gives a type error

©D. Poole 2024 CPSC 312 — Lecture 7 4 / 15

Clicker Question

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

map f [a1, a2, ..an] = [f a1, f a2, .., f an]

Which of the following implement map

A map f lst = foldr (\x y -> f x:y) [] lst

B map f lst = foldr (\x y -> f x: map f y) [] lst

C map f lst = foldr (\x y -> f x) [] lst

D map f lst = foldr (\x y -> x:f y) [] lst

E None: foldr cannot be used to implement map

©D. Poole 2024 CPSC 312 — Lecture 7 5 / 15

Clicker Question

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))
foldl ⊕ v [a1, a2, ..an] = (((v ⊕ a1)⊕ a2)⊕ ...)⊕ an

add1y x y = y+1

add1x x y = x+1

What returns the length of the list [7..9]?

A (foldr add1y 0 [7..9]) and (foldl add1y 0 [7..9])

B (foldr add1y 0 [7..9]) and (foldl add1x 0 [7..9])

C (foldr add1x 0 [7..9]) and (foldl add1y 0 [7..9])

D (foldr add1x 0 [7..9]) and (foldl add1x 0 [7..9])

E all four (foldr add1y 0 [7..9]) and
(foldl add1y 0 [7..9]) and (foldr add1x 0 [7..9])
and (foldl add1x 0 [7..9])

©D. Poole 2024 CPSC 312 — Lecture 7 6 / 15

Clicker Question

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))
foldl ⊕ v [a1, a2, ..an] = (((v ⊕ a1)⊕ a2)⊕ ...)⊕ an

Which of the following gives a type error at compilation time

(i) foldr (:) [] [1,2,3,4,5]

(ii) foldl (:) [] [1,2,3,4,5]

A neither give an error

B (i) gives an error and (ii) doesn’t

C (ii) gives an error and (i) doesn’t

D they both give an error

©D. Poole 2024 CPSC 312 — Lecture 7 7 / 15

Call-by-name and Call-by-value

Recall: Definition
foo x = exp is an abbreviation for
foo = \ x -> exp

Writing foo is same as \ x -> exp

foo x y = exp is an abbreviation for
foo = \ x -> \y -> exp

Reduction:
(\ x -> f(x)) a reduces to f(a)

substitute argument for formal parameter.

Example:

m x y = x*y

m (10-5) (m 10 5)

Call-by-value: evaluate arguments before reduction: m 5 50

Call-by-name: reduction of function first: (10-5)*(m 10 5)

©D. Poole 2024 CPSC 312 — Lecture 7 8 / 15

Call-by-name and Call-by-value

Call-by-value: evaluate arguments before reduction

Call-by-name: reduction of function first

What does the following do?

inf = 1+inf

Does following halt?

inf = 1+inf

fst (x,y) = x

fst (3+2, inf)

sq x = x*x

sq (55+45)

If they both halt, they give same answer

©D. Poole 2024 CPSC 312 — Lecture 7 9 / 15

Lazy Evaluation

Lazy evaluation: evaluate argument only once, only if needed

Evaluation Order:
▶ Evaluation from outside in
▶ Otherwise (if it knows both arguments need to be evaluated)

from left to right

Example:

from1 a = a: from1 (a+1)

mytake 0 _ = []

mytake _ [] = []

mytake n (x:xs) = x:mytake (n-1) xs

-- mytake 2 (from1 10)

©D. Poole 2024 CPSC 312 — Lecture 7 10 / 15

Lazy Evaluation

It is possible to evaluate all arguments that need to be
evaluated in parallel.

One could build a compiler that memorizes the results of all
previous function calls.
GHC does not do that. It just caches locally.

Lazy evaluation enables forms of programming that are not
possible with call by value. E.g., definition of if-then-else

myif True then_exp else_exp = then_exp

myif False then_exp else_exp = else_exp

fac n = myif (n==0) 1 (n*fac (n-1))

©D. Poole 2024 CPSC 312 — Lecture 7 11 / 15

Lazy Computation Examples (Lazy.hs)

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr(\ x y -> x+1) 0 [10..]

lstto 0 = []

lstto n = n:lstto (n-1)

mysum [] = 0

mysum (h:t) = h+mysum t

mysum (lstto 5)

©D. Poole 2024 CPSC 312 — Lecture 7 12 / 15

Lazy Computation Examples: finding primes (Lazy.hs)

Eratosthenes of Cyrene (276 BCE – c.195/194 BCE)
estimated circumference of Earth (accurately!), founded
geography, and defined one of the first non-trivial algorithms.

Sieve of Eratosthenes
start with the list of all numbers ≥ 2,
when found a prime, cross off the multiples of that prime from
the rest of the list. The next element on the list is prime.
- - sieve (p:xs) is the list of all primes from p, given all of a
multiples of primes less than p have been removed.

primes = sieve [2..]

where sieve (p:xs) =

p : sieve [x | x <- xs, x ‘mod‘ p /= 0]

take 100 primes

©D. Poole 2024 CPSC 312 — Lecture 7 13 / 15

Computing Fibonacci numbers (super fast(?))

Fibonacci numbers: fn = fn−1 + fn−2

Naive Fibonacci n takes time exponential in n.
Fast Fibonacci n takes time linear in n
Can we compute the Fibonacci n in time logarithmic in n?(

1 1
1 0

)(
fn
fn−1

)
=

(
fn + fn−1

fn

)
(

fn
fn−1

)
=

(
1 1
1 0

)n (
1
0

)
We can compute xn in logarithmic time....
see Lazy.hs

©D. Poole 2024 CPSC 312 — Lecture 7 14 / 15

