Announcements

@ Midterm #1 next Monday. More details to follow.

@ "“A computer is like a violin. You can imagine a novice trying
first a phonograph and then a violin. The latter, he says,
sounds terrible. Computer programs are good, [some] say, for
particular purposes, but they aren't flexible. Neither is a
violin, or a typewriter, until you learn how to use it.”

— Marvin Minsky, “Why Programming Is a Good Medium for
Expressing Poorly-Understood and Sloppily-Formulated
Ideas”, 1967

©D. Poole 2024 CPSC 312 — Lecture 7 1/15

Review

Haskell is a functional programming language

Strongly typed, but with type inference

Bool
Num, Int, Integer, Fractional, Floating, Double
Eq, Ord

Tuple, List, Function

Classes, type variables

List comprehension [f x | x<-list, cond x|

foldr @ v [al,a2,..an] =al® (a2 @ (... ® (an ® v)))
foldl @ v [al,a2,..an] = (((v@ al)® a2) @ ...) ® an

©D. Poole 2024 CPSC 312 — Lecture 7 2/15

Clicker Question

o foldr & v [al,a2,..an|=al® (2@ (... ® (an @ v)))
Given
ml = foldr (\ x y -> y+1) O
what is the result of
ml [10,11,12,13,14,15]
A [11,12,13,14,15,16]
B 6
Cc1
D [True,True,True,True,True,False]

E It gives a type error

©D. Poole 2024 CPSC 312 — Lecture 7 3/15

Clicker Question

o foldr & v [al,a2,..an|=al® (2@ (... ® (an @ v)))
Given
bar = foldr (\ x y -> x+1) O
what is the result of

bar [10,11,12,13,14,15]

A [11,12,13,14,15,16]

B 6

C 11

D [True,True,True,True,True,False]

E It gives a type error

©D. Poole 2024 CPSC 312 — Lecture 7 4/15

Clicker Question

e foldr & v [al,a2,..an|=al® (a2® (... (an P v)))
e map f [al,a2,..an] = [f al,f a2,..,f an]
Which of the following implement map

A map f 1st = foldr (\x y -> £ x:y) [] 1st

B map f 1st = foldr (\x y -> f x: map f y) [] 1lst
Cmap f 1st = foldr (\x y —> f x) [] 1st

D map f 1st = foldr (\x y -> x:f y) [] 1st

E None: foldr cannot be used to implement map

©D. Poole 2024 CPSC 312 — Lecture 7 5/15

Clicker Question

foldr & v [al,a2,..an]=al & (a2® (... ® (an @ v)))
foldl & v [al,a2,..an] = (((v@ al)® a2) @ ...) ® an
addly x y = y+1
addlx x y = x+1

What returns the length of the list [7..9]7

A (foldr addly O [7..9]) and (foldl addly 0 [7..9])
B (foldr addly 0 [7..9]) and (foldl addix 0 [7..9])
C (foldr addlx O [7..9]) and (foldl addly 0 [7..9])
D (foldr addix O [7..9]) and (foldl addix O [7..9])

E all four (foldr addily 0 [7..9]) and
(foldl addly O [7..9]) and (foldr addix 0 [7..9])
and (foldl addix 0 [7..9])

©D. Poole 2024 CPSC 312 — Lecture 7 6/15

Clicker Question

foldr & v [al,a2,..an]=al® (a2® (... ® (an ® v)))
foldl & v [al,a2,..an] = (((v® al)® a2)d...)® an

Which of the following gives a type error at compilation time
(i) foldr (:) [1 [1,2,3,4,5]
(ii) foldl (:) [1 [1,2,3,4,5]

A neither give an error

B (i) gives an error and (ii) doesn't

C (ii) gives an error and (i) doesn't

D they both give an error

©D. Poole 2024 CPSC 312 — Lecture 7 7/15

Call-by-name and Call-by-value

@ Recall: Definition
foo x = exp is an abbreviation for
foo = \ x -> exp
Writing foo is same as \ x -> exp

@ foo x y = exp is an abbreviation for
foo = \ x > \y -> exp

@ Reduction:
(\ x > f(x)) a reducesto f(a)
substitute argument for formal parameter.

@ Example:

m Xy = X*y

m (10-5) (m 10 5)
o Call-by-value: evaluate arguments before reduction: m 5 50
@ Call-by-name: reduction of function first: (10-5)*(m 10 5)

©D. Poole 2024 CPSC 312 — Lecture 7 8/15

Call-by-name and Call-by-value

o Call-by-value: evaluate arguments before reduction
o Call-by-name: reduction of function first
@ What does the following do?
inf = 1+inf
@ Does following halt?
inf = 1+inf
fst (x,y) = x
fst (3+2, inf)
@ Sq X = X*X
sq (55+45)

@ If they both halt, they give same answer

©D. Poole 2024 CPSC 312 — Lecture 7 9/15

Lazy Evaluation

@ Lazy evaluation: evaluate argument only once, only if needed

@ Evaluation Order:

» Evaluation from outside in
» Otherwise (if it knows both arguments need to be evaluated)

from left to right

e Example:
froml a = a: froml (a+1)
mytake 0 _ = []

mytake _ [] = []
mytake n (x:xs) = x:mytake (n-1) xs
-- mytake 2 (froml 10)

©D. Poole 2024 CPSC 312 — Lecture 7 10/15

Lazy Evaluation

@ It is possible to evaluate all arguments that need to be
evaluated in parallel.

@ One could build a compiler that memorizes the results of all
previous function calls.

GHC does not do that. It just caches locally.

@ Lazy evaluation enables forms of programming that are not
possible with call by value. E.g., definition of if-then-else
myif True then_exp else_exp = then_exp
myif False then_exp else_exp = else_exp
fac n = myif (n==0) 1 (n*fac (n-1))

©D. Poole 2024 CPSC 312 — Lecture 7 11/15

Lazy Computation Examples (Lazy.hs)

o foldr f v [] =v
foldr f v (x:xs) = f x (foldr f v xs)
foldr(\ x y -> x+1) 0 [10..]

@ Istto 0 = []
lstto n = n:lstto (n-1)
mysum [] = 0

mysum (h:t) = h+mysum t
e mysum (1lstto 5)

©D. Poole 2024 CPSC 312 — Lecture 7 12 /15

Lazy Computation Examples: finding primes (Lazy.hs)

o Eratosthenes of Cyrene (276 BCE — ¢.195/194 BCE)
estimated circumference of Earth (accurately!), founded
geography, and defined one of the first non-trivial algorithms.

@ Sieve of Eratosthenes
start with the list of all numbers > 2,
when found a prime, cross off the multiples of that prime from
the rest of the list. The next element on the list is prime.
- - sieve (p:xs) is the list of all primes from p, given all of a
multiples of primes less than p have been removed.

primes = sieve [2..]
where sieve (p:xs) =
p : sieve [x | x <= xs, x ‘mod‘ p /= 0]

take 100 primes

©D. Poole 2024 CPSC 312 — Lecture 7 13/15

Computing Fibonacci numbers (super fast(?))

Fibonacci numbers: f, = f,—1 + fn—>

Naive Fibonacci n takes time exponential in n.

Fast Fibonacci n takes time linear in n

Can we compute the Fibonacci n in time logarithmic in n?

(o) (o)= (")
(£2)-(10) (5)

We can compute x” in logarithmic time....
see Lazy.hs

©D. Poole 2024 CPSC 312 — Lecture 7 14 /15

