Announcements

- Midterm \#1 next Monday. More details to follow.
- "A computer is like a violin. You can imagine a novice trying first a phonograph and then a violin. The latter, he says, sounds terrible. Computer programs are good, [some] say, for particular purposes, but they aren't flexible. Neither is a violin, or a typewriter, until you learn how to use it."
- Marvin Minsky, "Why Programming Is a Good Medium for Expressing Poorly-Understood and Sloppily-Formulated Ideas", 1967

Review

- Haskell is a functional programming language
- Strongly typed, but with type inference Bool
Num, Int, Integer, Fractional, Floating, Double
Eq, Ord
Tuple, List, Function
- Classes, type variables
- List comprehension [$f x \mid x<-$ list, cond x]
- foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$
- foldl $\oplus v[a 1, a 2, . . a n]=(((v \oplus a 1) \oplus a 2) \oplus \ldots) \oplus a n$

Clicker Question

- foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$

Given
$\mathrm{ml}=\mathrm{foldr}(\backslash \mathrm{x} y \rightarrow \mathrm{y}+1) 0$
what is the result of
ml [10, 11, 12, 13, 14, 15]
A $[11,12,13,14,15,16]$
B 6
C 11
D [True, True, True, True, True, False]
E It gives a type error

Clicker Question

- foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$

Given
bar = foldr ($\backslash \mathrm{x} y \mathrm{y}$-> $\mathrm{x}+1$) 0
what is the result of
bar $[10,11,12,13,14,15]$
A $[11,12,13,14,15,16]$
B 6
C 11
D [True, True, True, True, True, False]
E It gives a type error

Clicker Question

- foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$
- map $f[a 1, a 2, . . a n]=\left[\begin{array}{ll}f & a 1, f \\ a 2\end{array}, . ., f a n\right]$

Which of the following implement map

$$
\begin{aligned}
& \text { A map f lst }=\text { foldr (} \backslash x \text { y } \rightarrow \mathrm{f} x: y \text {) [] lst } \\
& \text { B map f lst }=\text { foldr (} \backslash x \text { y }->\mathrm{f} \text { : map } f \text { y) [] lst } \\
& \text { C map f lst }=\text { foldr (} \backslash x \text { y } \rightarrow \text { f } x \text {) [] lst } \\
& \text { D map f lst = foldr (} \backslash x \text { y -> } x: f \text { y) [] lst } \\
& \text { E None: foldr cannot be used to implement map }
\end{aligned}
$$

Clicker Question

foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$
foldl $\oplus v[a 1, a 2, . . a n]=(((v \oplus a 1) \oplus a 2) \oplus \ldots) \oplus a n$
add1y x y $=\mathrm{y}+1$
add1x x y $=\mathrm{x}+1$
What returns the length of the list [7..9]?
A (foldr add1y 0 [7..9]) and (foldl add1y 0 [7..9])
B (foldr add1y 0 [7..9]) and (foldl add1x 0 [7..9])
C (foldr add1x 0 [7..9]) and (foldl add1y 0 [7..9])
D (foldr add1x 0 [7..9]) and (foldl add1x 0 [7..9])
E all four (foldr add1y 0 [7..9]) and (foldl add1y 0 [7..9]) and (foldr add1x 0 [7..9]) and (foldl add1x 0 [7..9])

Clicker Question

foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$
foldl $\oplus v[a 1, a 2, . . a n]=(((v \oplus a 1) \oplus a 2) \oplus \ldots) \oplus a n$
Which of the following gives a type error at compilation time
(i) foldr (:) [] [1,2,3,4,5]
(ii) foldl (:) [] [1,2,3,4,5]

A neither give an error
B (i) gives an error and (ii) doesn't
C (ii) gives an error and (i) doesn't
D they both give an error

Call-by-name and Call-by-value

- Recall: Definition
foo $x=\exp \quad$ is an abbreviation for
foo = \x -> exp
Writing foo is same as $\backslash x \rightarrow \exp$
- foo x y = exp
is an abbreviation for
foo = \x -> \y -> exp
- Reduction:
($\backslash x$-> $f(x)$) a reduces to $f(a)$
substitute argument for formal parameter.
- Example:

```
m x y \(=x * y\)
m (10-5) (m 10 5)
```

- Call-by-value: evaluate arguments before reduction: m 550
- Call-by-name: reduction of function first: $(10-5) *\left(\begin{array}{ll}\text { m } & 10\end{array}\right)$

Call-by-name and Call-by-value

- Call-by-value: evaluate arguments before reduction
- Call-by-name: reduction of function first
- What does the following do?
inf = 1+inf
- Does following halt?
inf = 1+inf
fst (x, y) $=\mathrm{x}$
fst (3+2, inf)
- $\mathrm{sq} \mathrm{x}=\mathrm{x} * \mathrm{x}$
sq ($55+45$)
- If they both halt, they give same answer

Lazy Evaluation

- Lazy evaluation: evaluate argument only once, only if needed
- Evaluation Order:
- Evaluation from outside in
- Otherwise (if it knows both arguments need to be evaluated) from left to right
- Example:

```
from1 a = a: from1 (a+1)
mytake 0 _ = []
mytake _ [] = []
mytake \(n(x: x s)=x: m y t a k e ~(n-1) ~ x s\)
-- mytake 2 (from1 10)
```


Lazy Evaluation

- It is possible to evaluate all arguments that need to be evaluated in parallel.
- One could build a compiler that memorizes the results of all previous function calls. GHC does not do that. It just caches locally.
- Lazy evaluation enables forms of programming that are not possible with call by value. E.g., definition of if-then-else
myif True then_exp else_exp = then_exp
myif False then_exp else_exp = else_exp
fac $n=m y i f(n==0) 1(n * f a c(n-1))$

Lazy Computation Examples (Lazy.hs)

- foldr f v [] $=\mathrm{v}$
foldr f v (x:xs) $=f x$ (foldr f $v x s)$
foldr(\ x y -> x+1) 0 [10..]
- lstto 0 = []
lstto $\mathrm{n}=\mathrm{n}$:lstto ($\mathrm{n}-1$)
mysum [] = 0
mysum (h:t) = h+mysum t
- mysum (lstto 5)

Lazy Computation Examples: finding primes (Lazy.hs)

- Eratosthenes of Cyrene (276 BCE - c.195/194 BCE) estimated circumference of Earth (accurately!), founded geography, and defined one of the first non-trivial algorithms.
- Sieve of Eratosthenes
start with the list of all numbers ≥ 2, when found a prime, cross off the multiples of that prime from the rest of the list. The next element on the list is prime.
- - sieve ($p: x s$) is the list of all primes from p, given all of a multiples of primes less than p have been removed.

```
primes = sieve [2..]
    where sieve (p:xs) =
```

$$
\mathrm{p}: \text { sieve }[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{x} \text { 'mod' } \mathrm{p} /=0]
$$

take 100 primes

Computing Fibonacci numbers (super fast(?))

Fibonacci numbers: $f_{n}=f_{n-1}+f_{n-2}$
Naive Fibonacci n takes time exponential in n.
Fast Fibonacci n takes time linear in n
Can we compute the Fibonacci n in time logarithmic in n ?

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n}}{f_{n-1}}=\binom{f_{n}+f_{n-1}}{f_{n}} \\
\binom{f_{n}}{f_{n-1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}\binom{1}{0}
\end{gathered}
$$

We can compute x^{n} in logarithmic time....
see Lazy.hs

