
A programming language designer should be responsible for the
mistakes made by programmers using the language. It is a serious
activity; not one that should be given to programmers with 9
months experience with assembly; they should have a strong
scientific basis, a good deal of ingenuity and invention and control
of detail, and a clear objective that the programs written by people
using the language would be correct, free of obvious errors and free
of syntactical traps.

— Tony Hoare, Null References: The Billion Dollar Mistake, 2009
https://www.infoq.com/presentations/

Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Assignment 1 solution and

Assignment 2 on schedule tab of web page.

©D. Poole 2021 CPSC 312 — Lecture 5 1 / 9

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Review

Haskell Types:

Bool (&&, ||, not)
Num (+, −, ∗, abs)

Integral (div, mod)
Int
Integer

Fractional (/)
Floating (log, sin, exp, ...)

Double
Eq (==, /=)

Ord (>, >=, <=, <)
List ([] :)

Char
String
tuples

©D. Poole 2021 CPSC 312 — Lecture 5 2 / 9

Some Predefined list definitions (Lists2.hs)

[e1..en] is the list of elements from e1 to en (inclusive)
[e1, e2..em] is the list of elements from e1 to em, where
e2− e1 gives step size
[e..] is the list of all numbers from e

take n lst first n elements of lst

head lst is the first element of lst
tail lst is the rest of the list

lst !! n nth element of lst

lst1 ++ lst2 append lst1 and lst2

sum [a1, a2, ..an] = a1 + a2 + ...+ an

zip [a1,a2,...,an] [b1,b2,...,bn] = [(a1,b1),(a2,b2),...,(an,bn)]

map f [a1,a2,...,an] = [f a1,f a2,...,f an]

©D. Poole 2021 CPSC 312 — Lecture 5 3 / 9

Lambda

How can we find elements of a list that are less than 3 or
greater than 7 (using filter)?

Lambda lets us define a function without giving it a name.

\ x -> (x < 3) || (x > 7)

is a function true of numbers less than 3 or greater than 7

filter (\ x -> (x < 3) || (x > 7)) [1..10]

is easy to read and work out what it is saying

A definition

foo x = exp

is an abbreviation for

foo = \ x -> exp

foo x y = exp is an abbreviation for
foo = \ x -> \y -> exp also written
foo = \ x y -> exp

myadd = \x y -> x+y

©D. Poole 2021 CPSC 312 — Lecture 5 4 / 9

Local Definitions

where can be used for local definitions the definition of
functions:

fun args = exp

where

local = val

is an abbreviation for

fun args =

((\ local -> exp) val)

let can be used anywhere an expression is used:

let local = val

in

exp

is an abbreviation for

((\ local -> exp) val)

©D. Poole 2021 CPSC 312 — Lecture 5 5 / 9

List Comprehensions

In mathematics, what is

{x2 | x ∈ {1, 2, 3, 4, 5, 6, 7}, x mod 2 = 1}

This is written in Haskell as

[x^2 | x <- [1..7], x ‘mod‘ 2 == 1]

“List Comprehension”

List comprehensions can do everything filter and map can do.

This can use pattern matching, e.g.,

[x+y | (x,y) <- [(1,2),(4,3),(5,6)]]

[x+y | (x,y) <- [(1,2),(4,3),(5,6)], x<y]

Implement dot-product of [a1, . . . , an] and [b1, . . . , bn]∑
i

ai ∗ bi

©D. Poole 2021 CPSC 312 — Lecture 5 6 / 9

Clicker Question

Given

even n = 0 == mod n 2

what is the result of

[even x | x <- [1,2,3,4,5,6]]

A [2,4,6]

B [2,4,6,8,10,12]

C 3

D [False,True,False,True,False,True]

E It gives a type error

©D. Poole 2021 CPSC 312 — Lecture 5 7 / 9

Clicker Question

Given

even n = 0 == mod n 2

what is the result of

[x | x <- [1,2,3,4,5,6], even x]

A [2,4,6]

B [2,4,6,8,10,12]

C 3

D [False,True,False,True,False,True]

E It gives a type error

©D. Poole 2021 CPSC 312 — Lecture 5 8 / 9

List Definitions (foldr and friends) Lists3.hs

Define:

sum [a1, a2, ..an] = a1 + a2 + ...+ an

product [a1, a2, ..an] = a1 ∗ a2 ∗ ... ∗ an
or [a1, a2, ..an] is True when one the ai is True

append [a1, a2, ..an] l2 = a1 : a2 : ... : an : l2

generalized to
foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))

How can we define sum, product, or , and using foldr?

What does the following return?
foldr (:) [5,6,7] [1,2,4]

How can we define append using foldr?
Haskell append is written as infix ++

Define dot-product using foldr and zip.

-- dotprod [x1,..,xn] [y1,..,yn] = x1*y1+...+xn*yn

dotprod v1 v2 = foldr (\ (x,y) s -> x*y+s) 0

(zip v1 v2)

©D. Poole 2021 CPSC 312 — Lecture 5 9 / 9

