A programming language designer should be responsible for the mistakes made by programmers using the language. It is a serious activity; not one that should be given to programmers with 9 months experience with assembly; they should have a strong scientific basis, a good deal of ingenuity and invention and control of detail, and a clear objective that the programs written by people using the language would be correct, free of obvious errors and free of syntactical traps.

- Tony Hoare, Null References: The Billion Dollar Mistake, 2009 https://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
- Assignment 1 solution and
- Assignment 2 on schedule tab of web page.

Review

- Haskell Types:

```
Bool (&&, ||, not)
Num (+, -, *, abs)
    Integral (div, mod)
        Int
            Integer
    Fractional (/)
                            Floating (log, sin, exp, ..)
                                    Double
Eq (==, /=)
    Ord (>, >=, <=, <)
List ([] :)
```


Char

```
String
tuples
```


Some Predefined list definitions (Lists2.hs)

- [e1..en] is the list of elements from e1 to en (inclusive) [e1, e2..em] is the list of elements from e1 to em, where $e 2-e 1$ gives step size [e..] is the list of all numbers from e
- take n Ist first n elements of Ist
- head Ist is the first element of Ist tail Ist is the rest of the list
- Ist !! n nth element of Ist
- Ist1 ++ Ist2 append Ist1 and Ist2
- $\operatorname{sum}[a 1, a 2, . . a n]=a 1+a 2+\ldots+a n$
- zip $[a 1, a 2, \ldots, a n][b 1, b 2, \ldots, b n]=[(a 1, b 1),(a 2, b 2), \ldots,(a n, b n)]$
- map $f[a 1, a 2, \ldots, a n]=[f a 1, f a 2, \ldots, f a n]$

Lambda

- How can we find elements of a list that are less than 3 or greater than 7 (using filter)?
- Lambda lets us define a function without giving it a name.
\x \rightarrow ($\mathrm{x}<3$) || ($\mathrm{x}>7$)
is a function true of numbers less than 3 or greater than 7
- filter ($\backslash \mathrm{x}->(\mathrm{x}<3$) || ($\mathrm{x}>7$)) [1..10]
is easy to read and work out what it is saying
- A definition
foo $x=\exp$
is an abbreviation for

$$
f 00=\backslash x \rightarrow \exp
$$

- foo x y $=\exp$
foo $=\backslash x \rightarrow>y \exp$
is an abbreviation for
also written
foo $=\backslash x$ y $->\exp$
- myadd $=$ \x y $\rightarrow \mathrm{x}+\mathrm{y}$

Local Definitions

- where can be used for local definitions the definition of functions:

$$
\begin{gathered}
\text { fun args }=\exp \\
\text { where } \\
\text { local }=\text { val }
\end{gathered}
$$

is an abbreviation for
fun args =
((\ local -> exp) val)

- let can be used anywhere an expression is used:
let local = val
in
exp
is an abbreviation for
((\backslash local -> exp) val)

List Comprehensions

- In mathematics, what is

$$
\left\{x^{2} \mid x \in\{1,2,3,4,5,6,7\}, x \bmod 2=1\right\}
$$

- This is written in Haskell as

$$
\left[x^{\wedge} 2 \mid x<-[1 . .7], x \quad \bmod ^{\prime} 2==1\right]
$$

"List Comprehension"

- List comprehensions can do everything filter and map can do.
- This can use pattern matching, e.g.,

$$
\begin{aligned}
& {[x+y \mid(x, y)<-[(1,2),(4,3),(5,6)]]} \\
& {[x+y \text { | }(x, y)<-[(1,2),(4,3),(5,6)], x<y]}
\end{aligned}
$$

- Implement dot-product of $\left[a_{1}, \ldots, a_{n}\right]$ and $\left[b_{1}, \ldots, b_{n}\right]$

$$
\sum_{i} a_{i} * b_{i}
$$

Clicker Question

Given
even $\mathrm{n}=0==\bmod \mathrm{n} 2$
what is the result of
[even $\mathrm{x} \mid \mathrm{x}<-[1,2,3,4,5,6]$]
A $[2,4,6]$
B $[2,4,6,8,10,12]$
C 3
D [False,True,False,True,False,True]
E It gives a type error

Clicker Question

Given
even $\mathrm{n}=0==\bmod \mathrm{n} 2$
what is the result of

$$
[x \mid x<-[1,2,3,4,5,6], \text { even } x]
$$

A $[2,4,6]$
B $[2,4,6,8,10,12]$
C 3
D [False,True,False, True, False, True]
E It gives a type error

List Definitions (foldr and friends) Lists3.hs

Define:

- $\operatorname{sum}[a 1, a 2, . . a n]=a 1+a 2+\ldots+a n$
- product $[a 1, a 2, . . a n]=a 1 * a 2 * \ldots * a n$
- or $[a 1, a 2, . . a n]$ is True when one the ai is True
- append $[a 1, a 2, . . a n] / 2=a 1: a 2: \ldots: a n: / 2$
- generalized to
foldr $\oplus v[a 1, a 2, . . a n]=a 1 \oplus(a 2 \oplus(\ldots \oplus(a n \oplus v)))$
- How can we define sum, product, or, and using foldr?
- What does the following return?
foldr (:) [5,6,7] [1,2,4]
How can we define append using foldr?
Haskell append is written as infix ++
- Define dot-product using foldr and zip.
-- dotprod $[x 1, \ldots, x n][y 1, . ., y n]=x 1 * y 1+. . .+x n * y n$
dotprod v1 v2 = foldr ($(\mathrm{x}, \mathrm{y}) \mathrm{s}->\mathrm{x} * \mathrm{y}+\mathrm{s}) \mathrm{O}$ (zip v1 v2)

