
Thought for the day

“...there are two ways of constructing a software design: One way
is to make it so simple that there are obviously no deficiencies and
the other way is to make it so complicated there are no obvious
deficiencies. The first method is far more difficult.”

— Tony Hoare, 1980 ACM Turing Award Lecture

©D. Poole 2024 CPSC 312 — Lecture 4 1 / 17

Review

Haskell Types:

Bool (&&, ||, not)
Num (+, −, ∗, abs)

Integral (div, mod)
Int
Integer

Fractional (/)
Floating (log, sin, exp, ...)

Double
Eq (==, /=)

Ord (>, >=, <=, <)
List ([] :)
Char
String

©D. Poole 2024 CPSC 312 — Lecture 4 2 / 17

Guards

Guards are used for if-then-else structure in definition of
functions.

General case:

name x1 x2 ... xk

| g1 = e2

| g2 = e2

...

| gn = en

evaluate g1, g2 in turn until the first one gi evaluates to true,
then return value of ei .

An Exception is raised if none of the guards are True

Typical to have last condition to be otherwise which is a
variable with value True.

Haskell also has “if ... then ... else ...” structure

©D. Poole 2024 CPSC 312 — Lecture 4 3 / 17

List Examples (Lists.hs)

Define

numeq x lst = number of instances of x in list lst.

numc c lst = number of elements of lst for which c is True

filter c lst = list of elements of lst for which c is True

filter is the only one predefined. Why?
More general definitions are easier to define, use and
remember.

How can numc and numeq be defined in terms of filter?

length(filter c lst) does not need to actually create a list.

©D. Poole 2024 CPSC 312 — Lecture 4 4 / 17

Types Revisited

Type declaration:
exp :: cc => te

exp is an expression,
cc is a (tuple of) class constraint of form C a where C is a
class (e.g, Num, Integral,...) and a is a type variable.
te is a type expression.

A function from type b to type c is of type b -> c

A list of type b is of type [b]

A 3-tuple (triple) of elements of type b, c , d is of type
(b, c , d). (Similarly for other-length tuples).

What is the type of length that takes a list and returns an Int?
length :: [a] -> Int

What is the type of + that adds two numbers?
(+) :: Num a => a -> a -> a

What is the type of div (integer division)?
div :: Integral a => a -> a -> a

©D. Poole 2024 CPSC 312 — Lecture 4 5 / 17

Types (cont)

What is the inferred type of numeq?

numeq _ [] = 0

numeq x (h:t)

| x==h = 1+numeq x t

| otherwise = numeq x t

numeq :: (Num a, Eq a1) => a1 -> [a1] -> a

Note: a and a1 could be same or different types.

What is the inferred type of numc?

numc _ [] = 0

numc c (h:t)

| c h = 1+numc c t

| otherwise = numc c t

numc :: Num a => (t -> Bool) -> [t] -> a

©D. Poole 2024 CPSC 312 — Lecture 4 6 / 17

Clicker Question

The inferred type of numeq is

numeq :: (Num p, Eq t) => t -> [t] -> p

What is the inferred type of numless:

numless _ [] = 0

numless x (h:t)

| h<x = 1 + numless x t

| otherwise = numless x t

A numless :: (Num p, Eq t) => t -> [t] -> p

B numless :: (Num p, Ord t) => t -> [t] -> p

C numless :: (Num p) => t -> [t] -> p

D numless :: t -> [t] -> p

E numless :: Int -> [Int] -> Int

©D. Poole 2024 CPSC 312 — Lecture 4 7 / 17

Clicker Question

What is the inferred type of myelem defined by

myelem _ [] = False

myelem e (h:t)

| e==h = True

| otherwise = myelem e t

A myelem :: Eq a => a -> [b] -> Bool

B myelem :: Eq t => t -> [t] -> Bool

C myelem :: a -> [b] -> Bool

D myelem :: a -> [b]

E I have no idea

See
http://cs.ubc.ca/~poole/cs312/2024/haskell/Lists2.pl

©D. Poole 2024 CPSC 312 — Lecture 4 8 / 17

http://cs.ubc.ca/~poole/cs312/2024/haskell/Lists2.pl

Clicker Question

What is the inferred type of mytake defined by

mytake 0 _ = []

mytake _ [] = []

mytake n (x:xs) = x : mytake (n-1) xs

A mytake :: Int -> [Int] -> [Int]

B mytake :: (Num a, Eq a) => a -> [t] -> [t]

C mytake :: (Num a, Eq a) => a -> [t] -> t

D mytake :: (Num a, Eq a) => a -> t -> t

E I have no idea

See
http://cs.ubc.ca/~poole/cs312/2024/haskell/Lists2.pl

©D. Poole 2024 CPSC 312 — Lecture 4 9 / 17

http://cs.ubc.ca/~poole/cs312/2024/haskell/Lists2.pl

Clicker Question

What is the inferred type of numeqh defined by

numeqh _ [] n = n

numeqh x (h:t) n

| x==h = numeqh x t (n+1)

| otherwise = numeqh x t n

A numeqh :: (Num b, Eq a) => (a, [a], b) -> b

B numeqh :: (Num a, Eq a) => a -> [a] -> a -> a

C numeqh :: (Eq a) => a -> [a] -> Int -> Int

D numeqh :: (Num b, Eq a) => a -> [a] -> b -> b

E I have no idea

©D. Poole 2024 CPSC 312 — Lecture 4 10 / 17

Clicker Question

What is the inferred type of flip defined by

flip f a b = f b a

A flip :: (t1 -> t2) -> t2 -> t1

B flip :: (t -> t -> t) -> t -> t -> t

C flip :: (t -> t) -> t -> t

D flip :: (t1 -> t2 -> t) -> t2 -> t1 -> t

E I have no idea

©D. Poole 2024 CPSC 312 — Lecture 4 11 / 17

Clicker Question

Consider the functions flip and hh defined by

flip f a b = f b a

hh x y z = 10000*x + 100*y + z

What is the value of

flip hh 3 5 7

(It does not give an error.)

A 30507

B 70503

C 50307

D 30705

E 70305

©D. Poole 2024 CPSC 312 — Lecture 4 12 / 17

Clicker Question

Consider the functions flip and hh defined by

flip f a b = f b a

hh x y z = 10000*x + 100*y + z

What is the value of

flip (hh 3) 5 7

(It does not give an error.)

A 30507

B 70503

C 50307

D 30705

E 70305

©D. Poole 2024 CPSC 312 — Lecture 4 13 / 17

Clicker Question

filter defined by

filter _ [] = []

filter c (h:t)

| c h = h:filter c t

| otherwise = filter c t

has type:

A filter :: t -> Bool -> [t] -> [t]

B filter :: ([t] -> Bool) -> [t] -> [t]

C filter :: (t -> Bool) -> t -> t

D filter :: (t -> Bool) -> [t] -> [t]

E it does not have a legal type (and will result in a type error)

©D. Poole 2024 CPSC 312 — Lecture 4 14 / 17

Clicker Question

filter, even are defined by:

filter _ [] = []

filter c (h:t)

| c h = h:filter c t

| otherwise = filter c t

even n = 0 == mod n 2

what is the result of

filter even [1,2,3,4,5,6]

A [2,4,6]

B [2,4,6,8,10,12]

C 3

D [False,True,False,True,False,True]

E It gives a type error

©D. Poole 2024 CPSC 312 — Lecture 4 15 / 17

Clicker Question

Given the definitions:

filter _ [] = []

filter c (h:t)

| c h = h:filter c t

| otherwise = filter c t

even n = 0 == mod n 2

nums = [1,2,4,5,6,7,8,10,11]

Which query will return the number of even elements of nums

A length filter even nums

B filter length even nums

C length (filter even nums)

D filter even nums length

E None of the above

©D. Poole 2024 CPSC 312 — Lecture 4 16 / 17

Some Predefined list definitions (Lists2.hs)

[e1..en] is the list of elements from e1 to en (inclusive)
[e1, e2..em] is the list of elements from e1 to em, where
e2− e1 gives step size
[e..] is the list of all numbers from e

take n lst first n elements of lst

head lst is the first element of lst
tail lst is the rest of the list

lst !! n nth element of lst

lst1 ++ lst2 append lst1 and lst2

sum [a1, a2, ..an] = a1 + a2 + ...+ an

zip [a1,a2,...,an] [b1,b2,...,bn] = [(a1,b1),(a2,b2),...,(an,bn)]

map f [a1,a2,...,an] = [f a1,f a2,...,f an]

©D. Poole 2024 CPSC 312 — Lecture 4 17 / 17

