
Quotation for the day

... “computer science” is not a science and .. its significance has
little to do with computers. The computer revolution is a
revolution in the way we think and in the way we express what we
think.

— Harold Abelson and Gerald Jay Sussman, “Structure and
Interpretation of Computer Programs”, 1985

©D. Poole 2024 CPSC 312 — Lecture 3 1 / 14

Review

Haskell Types:

Bool (&&, ||, not)
Num (+, −, ∗, abs)

Integral (div, mod)
Int
Integer

Fractional (/)
Floating (log, sin, exp, ...)

Double
Eq (==, /=)

Ord (>, >=, <=, <)
List ([] :)
Char
String

©D. Poole 2024 CPSC 312 — Lecture 3 2 / 14

Integral types

Intergral types represent integers.

They implement + * ^ - div mod abs negate

Two implementations:
▶ Int - fixed-precision integers
▶ Integer - arbitrary precision integers

Integral is a class.
Int and Integer are types in class Integral.
Only types have implementations.
(Haskell classes are like Java interfaces)

©D. Poole 2024 CPSC 312 — Lecture 3 3 / 14

Fractional types

Fractional types represent real numbers.

They implement + * ^ - / abs negate

Floating types also implement log sin exp . . .

Multiple implementations:
▶ Double - double precision floating-point numbers (64 bit)
▶ Float - single precision floating-point numbers (32 bit)

— don’t use
▶ Rational - exact rational numbers

There are no types that are in both Integral and Fractional

Num types implement + * ^ - abs negate

Num is a class (elements are types).
Integral and Fractional are subclasses of Num.
Floating is a subclass of Fractional.

©D. Poole 2024 CPSC 312 — Lecture 3 4 / 14

Eq and Ord classes

Eq types implement == /=

Ord types implement > >= <= < max min

Int, Integer, Double implement Eq and Ord

Can you think of a Num type that isn’t an Ord type?
How about Complex?

©D. Poole 2024 CPSC 312 — Lecture 3 5 / 14

Clicker Question

What is the inferred type of
1.7 + fromIntegral (div 100 7)

A Int

B Fractional a => a

C Double

D Integral a => a

E Num a => a

©D. Poole 2024 CPSC 312 — Lecture 3 6 / 14

Clicker Question

The inferred type of == is

Eq a => a -> a -> Bool

Based on this type signature, which of the following is not true:

A == is a function that takes two arguments

B the type of the first argument to == must be the same as
the type of the second argument

C the type of the first argument must be in the Eq class

D the two arguments to == must be the same as each other

E x == y must return either True or False

©D. Poole 2024 CPSC 312 — Lecture 3 7 / 14

Lists

A list is an ordered sequence of elements of the same type

A list of type [t], where t is a type, is either:
▶ the empty list []
▶ of the form h:r where h is of type t and r is a list of type [t]

: is an infix function.

A list has a special syntax :
[7] is an abbreviation for 7:[]
[5,7] is an abbreviation for 5:7:[]
[3,5,7] is an abbreviation for 3:5:7:[]
: associates to the right

both [...] and : notation can be used in patterns on the left
side of =.
myelem e lst is True whenever e is in lst

myelem e [] = False

myelem e (h:t) = e==h || myelem e t

©D. Poole 2024 CPSC 312 — Lecture 3 8 / 14

Examples (Lists.hs)

myappend l1 l2

returns the list containing the elements of list l1 followed by
elements of l2

This can also be defined as infix function
l1 ++++ l2

returns the list containing the elements of list l1 followed by
elements of l2

A string is a list of characters
type String = [Char] -- Defined in ‘GHC.Base’

[1,2,3] ++++ [’a’,’b’]

gives an error. Why?

The standard Prelude defines ++ for append.

©D. Poole 2024 CPSC 312 — Lecture 3 9 / 14

Examples (Lists.hs)

Let’s define the following:

numeq e lst

returns the number of instances of e in list lst.
numeq 4 [7,1,4,5,4,6,7,4,8] returns 3

numless x lst

returns the number of elements of list lst less than x

©D. Poole 2024 CPSC 312 — Lecture 3 10 / 14

Clicker Question

The inferred type of numeq is

numeq :: (Num p, Eq t) => t -> [t] -> p

Based on this type signature, which of the following is not true:

A the type of the first argument must implement == and /=

B the type of the first argument must be the same as the type
of every element of the list that is the second argument

C numeq must return a value of a type in the Num class

D numeq takes two arguments

E numeq must return an Int

©D. Poole 2024 CPSC 312 — Lecture 3 11 / 14

Examples (Lists.hs)

numeq e lst

returns the number of instances of e in list lst.

numless x lst

returns the number of elements of list lst less than x

Define
numc c lst

returns number of elements in lst that have condition c true

Define numeq using numc

How can we use numc to count the number of items in a list
that are less than 4?

©D. Poole 2024 CPSC 312 — Lecture 3 12 / 14

List Examples (Lists.hs)

Define

numeq x lst = number of instances of x in list lst.

numc c lst = number of elements of lst for which c is True

filter c lst = list of elements of lst for which c is True

filter is the only one predefined. Why?
More general definitions are easier to define, use and
remember.

How can numc and numeq be defined in terms of filter?

length(filter c lst) does not create a list (with lazy
evaluation).

©D. Poole 2024 CPSC 312 — Lecture 3 13 / 14

Types Revisited

Type declaration:
exp :: cc => te

exp is an expression,
cc is a class constraint of form C a where C is the name of a
class (e.g, Num, Integral, Show,...) and a is a type variable.
te is a type expression.

A function from type b to type c is of type b -> c

A list of type b is of type [b]

A 3-tuple (triple) of elements of type b, c , d is of type
(b, c , d).

What is the type of mylen that takes a list and returns an Int?
mylen :: [a] -> Int

What is the type of + that adds two numbers?
(+) :: Num a => a -> a -> a

What is the type of div (integer division)?
div :: Integral a => a -> a -> a

©D. Poole 2024 CPSC 312 — Lecture 3 14 / 14

