
“Learn at least a half dozen programming languages.
Include one language that emphasizes class abstractions
(like Java or C++), one that emphasizes functional ab-
straction (like Lisp or ML or Haskell), one that supports
syntactic abstraction (like Lisp), one that supports declar-
ative specifications (like Prolog or C++ templates), and
one that emphasizes parallelism (like Clojure or Go).”

Peter Norvig “Teach Yourself Programming in Ten Years”
http://norvig.com/21-days.html

©D. Poole 2024 CPSC 312 — Lecture 1 1 / 14

http://norvig.com/21-days.html


CPSC 312 — Functional and Logic Programming

Professor: David Poole

URL: http://www.cs.ubc.ca/~poole/cs312/2024/
Assignment 1 is due next Tuesday!

We will use Canvas for assignment submission, grades and
Zooming. Classes will be simulcast on Zoom and also
recorded an available on Canvas. (You may have to remind
me to record).

Every student should expect to struggle, but can succeed!
You learn by doing and making mistakes.

Ask questions!

Quote of the day: “Apparently, the university is the only place
where you pay for something, and then try as hard as you can
NOT to get your money’s worth.”
(https://people.cs.kuleuven.be/~bart.demoen/)

©D. Poole 2024 CPSC 312 — Lecture 1 2 / 14

http://www.cs.ubc.ca/~poole/cs312/2024/
https://people.cs.kuleuven.be/~bart.demoen/


CPSC 312 — Assessment

Marks:
▶ 40%: 2 projects (groups 2 or 3) with demos
▶ 30%: 3 midterms (10% each). Tentative dates on web page

(subject to change).
▶ 25%: final exam
▶ 3%: assignments (marked for participation)
▶ 2% informative discussion posts.

Estimates:

Everyone can pass

If you memorize and can reproduce everything presented in
class you can get a B- or C+.

For an A or A+ you have to “get it” (“aha!” moment).

©D. Poole 2024 CPSC 312 — Lecture 1 3 / 14



Clicker Question

I am taking CPSC 312 because (pick best answer)

A I want to learn as many programming paradigms as
possible

B Haskell and Prolog programmers make lots of money

C I am fascinated by the ideas of functional and/or
logic programming

D I heard that 312 is an easy course

E I just need another (3rd year) course

©D. Poole 2024 CPSC 312 — Lecture 1 4 / 14



Lecture Overview

What is logic and functional programming?

Simple Haskell programs and queries.

Learning objectives: at the end of the class, you should be able to

recognize syntax and semantics of Haskell

write a simple Haskell program

©D. Poole 2024 CPSC 312 — Lecture 1 5 / 14



What is functional and logic programming?

Program is a high-level specification of what should be
computed, not how it should be computed.

Try to find representations that are as close to the problem
domain as possible

Abstract away from the state of a computer

Programming and debugging should all be questions about
the domain, not about the computation.

Allow computer to decide how to most efficiently implement
the program.

To solve a complex problem, break it into simpler problems.

Variables cannot change their values. Controlled side effects.

Haskell is a strongly typed language. You don’t need to
declare types. Type checking is done at compile time.

©D. Poole 2024 CPSC 312 — Lecture 1 6 / 14



Choosing a Representation Language

We need to represent a problem to solve it on a computer. problem
→ specification of problem
→ appropriate computation


Example specification languages: Machine Language, C++, Java,
Haskell, Prolog, English

©D. Poole 2024 CPSC 312 — Lecture 1 7 / 14



Haskell

Haskell lets one:

evaluate expressions

define functions

http://cs.ubc.ca/~poole/cs312/2024/haskell/First.hs

©D. Poole 2024 CPSC 312 — Lecture 1 8 / 14

http://cs.ubc.ca/~poole/cs312/2024/haskell/First.hs


Syntax

comments are either
-- comment to end of line or
{- comment -}

variables either:
▶ prefix: made up of letters, digits, ’ or and start with a

lower-case letter
▶ infix: made up of sequences of other characters

indentation is significant

parentheses are used for precedence and tuples (not for
arguments of functions)

Function application binds most strongly
fac 3*5 means
(fac 3)*5

Binary prefix functions can be made infix using back-quotes,
e.g. ‘div‘
Infix operators can be made prefix using parentheses, e.g. (*)

©D. Poole 2024 CPSC 312 — Lecture 1 9 / 14



Clicker Question

Which of the following is not true:

A Haskell functions require parentheses (like Java and C)

B Haskell variables cannot change their values

C Haskell is a strongly typed language

D You don’t need to declare the types of all functions

©D. Poole 2024 CPSC 312 — Lecture 1 10 / 14



Clicker Question

Which is the true of the expression:
foo bar zoo

A foo must be a function

B bar must be a function

C bar cannot be a function

D zoo must be a number

E bar and zoo must be of the same type

©D. Poole 2024 CPSC 312 — Lecture 1 11 / 14



Clicker Question

Which is the true of the expression:
foo @#$%^& zoo

A foo must be a function

B @#$%^& must be a function

C @#$%^& cannot be a function

D zoo must be a number

E foo must not be a function

©D. Poole 2024 CPSC 312 — Lecture 1 12 / 14



Definition of a function

Function Definition:

name x1 x2 ... xk = e

x1 x2 ... xk are formal parameters
e is an expression

xi can contain structures, but each variable can only appear
once.

Multiple equations can define a function; the first one to
succeed is used.

©D. Poole 2024 CPSC 312 — Lecture 1 13 / 14



Evaluation of Haskell program

Haskell evaluates expressions.

Haskell knows how to implement some expressions
(such as 3+4*7)

Given the definition of name:

name x1 x2 ... xk = e

The expression

name v1 v2 ... vk

when all k arguments are provided evaluates to value of
e {x1/v1, x2/v2, ..., xk/vk}

which is same as e but with each xi replaced with vi

foo x y = 1000*x+y

foo 9 3

x*1000+y {x/9, y/3} evaluates to value of 9*1000+3
which is 9003.

©D. Poole 2024 CPSC 312 — Lecture 1 14 / 14


