The University of British Columbia

Department of Computer Science
Midterm Examination 3 - Fall 2019

Computer Science 312
Functional and Logic Programming

Question 1 [12 marks]

(a) [4 marks] What does " g is not a logical consequence of $K B$ " mean? [Copying the defintion of logical consequnce from you notes and putting "not" in the front will not result in many marks.]
(b) [6 marks] Consider the following (partial) derivation of the query ? w. Note that the knowledge base is not specified. Fill in the underlined missing answers.

(c) [2 marks] If the proof fails here, what can you say about the knowledge base?

Question 2 [10 marks]

Consider the following logic program (assume there are declatations so there are no undefined predicate errors):
a :- b, c, d.
a :- e.
b :- g.
b :- m.
g.
c :- m.
e :- g.
d.
(a) [5 marks] Draw the box model for a. You need to include the ports (boxes and lines/arrrows), but not the port names. You need to include the names for the atoms that the boxes represent.
(b) [5 marks] Here is a (edited) trace of the query ?- a. Fill in the missing (underlined) lines:

```
[trace] ?- a.
    Call: a
    Call: b
    Exit: g
    -----------------------------------------
    Call: c
    Call: m
    Fail: m
    Redo: b
    Call: m
    Fail: m
    Fail: b
    -------------------------------------------
    Call: e
    Call: g
    Exit: g
    Exit: a
true.
```


Question 3 [10 marks]

A binary search tree is a useful definition of a set. Suppose a set in Prolog is defined by the constant empty, denoting the empty set, and the term $\operatorname{set}(E, L S, R S)$ which denotes the set where E is an element of the set, $L S$ is the set containing the elements less than E and $R S$ is the set of elements greater than E.

The set $\{2,7,9,11\}$ can thus be represented as $\operatorname{set}(7, \operatorname{set}(2$, empty, empty $), \operatorname{set}(9$, empty, $\operatorname{set}(11$, empty, empty)))
Consider the following Prolog code:

```
elem(E, set(E,_,_)).
elem(V, set(E,LT,_)) :-
    V #< E,
    elem(V,LT).
elem(V, set(E,_,RT)) :-
    E #< V,
    elem(V,RT).
```

where \#< is an infix binary predicate between integers representing "less than".
(a) [3 marks] What is the first result of the following query? ?- elem $(3, S)$, elem $(8, S)$.
(b) [7 marks] Implement the following relation in Prolog: (The only predicate you can use that you do not define is \#<.) \% insert(E,S,S1) is true if S 1 is a set containing E and the elements of set S

Question 4 [10 marks]

In assignment 1, we wrote a program where the solution was:

```
-- myapply lst sub where sub is a list of ( }\textrm{x},\textrm{y}\mathrm{ ) pairs, replaces each occurrence of }\textrm{x}\mathrm{ by y in lst.
myapply :: Eq t => [t] -> [(t, t)] -> [t]
myapply [] _ = []
myapply (h:t) sub = app h sub : myapply t sub
    where
        -- app e sub gives the value e is replaced by according to sub
        app e [] = e
        app e ((x,y):r)
            | e==x = y
            | otherwise = app e r
```

The analogous Prolog program myapply(Lst,Sub, Res) is true when Lst is a list, Sub is a list of (X, Y) pairs, and Res is the result of replacing each X by Y in Lst. It should have the following behaviour:
?- myapply([a,b,c,d,e,c], [(a,f), (c,3), (g,7)], R).
$R=[f, b, 3, d, e, 3]$.
?- myapply([b,a,a,b], [(a,b), (b,a)], R).
$\mathrm{R}=[\mathrm{a}, \mathrm{b}, \mathrm{b}, \mathrm{a}]$.
A definition of myapply is:
myapply([], _, []).
myapply([H|T], Sub, [H1|T1]) :-
app(H, Sub, H1),
myapply(T, Sub, T1).
(a) [3 marks] What is the first answer to the query
myapply([b,a,a,b], S, [c,c|R]).
(b) [7 marks] Implement app so it works with myapply. The only predefined predicate you may use is $\operatorname{dif}(X, Y)$ that is true when X and Y are different.

Question 5 [3 marks]

Complete the following sentences
(a) I like
(b) I dislike
(c) I wish

