Question 1 [8 marks]

Suppose the clauses for atom r are

```
r :- s,t.
r :- u.
```

(a) [4 marks] Draw the box model for r. You do not need to include the port names, but you need to include the names for the atoms that the boxes represent.
(b) [2 marks] According to the box model, what happens immediately before atom t is called?
(c) [2 marks] In Prolog's trace, what is printed immediately after "Redo r"? (You only need to gives as much as can be inferred from the box model.)

Question 2 [8 marks]

Consider the following (partial) derivation of the query ? w. Note that the knowledge base is not specified. Fill in the underlined missing answers.

Answer clause	Clause resolved
yes :- w	Query
yes : $-\mathrm{s}, \mathrm{t}$	w : - s, t
yes : $-\mathrm{r}, \mathrm{t}$	s : - r
yes : - q, z, t	(a) --------------------------------
yes : $-\mathrm{z}, \mathrm{t}$	
(c) --------------	$\mathrm{z}:-\mathrm{u}, \mathrm{p}$
yes : - n, o, p, t	$\mathrm{u}:-\mathrm{n}, \mathrm{o}$

(d) If the proof then fails, what does this tell us about the knowledge base?

Question 3 [6 marks]

Consider the following knowledge base. (Assume there are dynamic declarations so there are no errors).

```
flies_autonomously :- bird, \+ abfly.
flies :- flies_autonomously, \+ injured.
```

```
flies :- on_plane, \+ plane_broken.
abfly :- emu.
abfly :- penguin.
bird :- emu.
bird :- penguin.
emu.
on_plane.
```

Give the set of all atoms and negations of atoms that are a logical consequence (i.e., the atoms and their negations that would be produced by the bottom-up proof procedure for negation as failure). You do not need to give the derivation.

Question 4 [10 marks]

Suppose that dates are represented as $c e(Y, M, D)$ for dates in the common era, where they year is Y, the month is M and the day in the month is D; these are all integers. For example today's date is $c e(2017,9,27)$.

Write a predicate next_day $(C 1, C 2)$ that is true when date $C 2$ is the date after $C 1$. You can assume the following predicates are predefined:

- < which compares two arithmetic expressions for "less than"
- is, where V is E is true if arithmetic expression E evaluates to number V
- number_days (M, D) which is true if month M contains D days defined by

```
number_days(M, 31) :- member(M, [1, 3, 5, 7, 8, 10, 12]).
number_days (2,28).
number_days(M, 30) :- member(M,[4,6,9,11]).
```

You can assume that $C 1$ does not contain variables when called.
An example of its use is:

```
?- next_day(ce(2017,12,30),D).
D = ce(2017, 12, 31).
?- next_day(ce(2017,12,30),D), next_day(D,D1).
D = ce(2017, 12, 31),
D1 = ce(2018, 1, 1).
```


Question 5 [10 marks]

(a) [6 marks] Write a program replace (Old,New, Lst, Result) which is true when Result is a list with the same elements as list Lst (in the same order) but with all instances of Old replaced by New. For example, it should have the following behaviour:

```
?- replace(a, w, [a, v, a, t, a, r], R).
R = [w, v, w, t, w, r]
?- replace(w, a, [a, v, a, t, a, r], R).
R = [a, v, a, t, a, r]
```

You may use the predicate $\operatorname{dif}(X, Y)$ which is true when X is different to Y, but no other built-in predicates.
(b) [4 marks] What are all of the answers to the query:
?- replace(prolog,fun, L, [fun,is,fun]).

Question 6 [3 marks]

(a) What do you like about the course so far?
(b) What do you dislike about the course so far?
(c) What should be changed about this course?

