
Haskell you may assume (if allowed in the question)

Basic data types:
Class / Type Functions
Bool && || not

Tuple (,) fst snd

List [] : head tail ++ !! length take zip

Num + - * abs

Integral div mod even odd

Fractional /

Eq == /=

Ord > >= <= <

Show show

Read read

IO getLine getChar putStr do <- return let
Basic types: Char, Int, Integer, Double

List functions:
List comprehension [f x | x <- list, cond x]

foldr ⊕ v [a1, a2, ..an] = a1⊕ (a2⊕ (...⊕ (an ⊕ v)))
foldl ⊕ v [a1, a2, ..an] = (((v ⊕ a1)⊕ a2)⊕ ...)⊕ an

type String = [Char]

data Maybe a = Nothing | Just a

map :: (a -> b) -> [a] -> [b]

class Functor p where

fmap :: (a -> b) -> p a -> p b

Prolog you may assume (if allowed in the question)

% dif(X,Y) is true if X and Y denote different individuals

% X < Y is true if expression X is less than Y

% X =< Y is true if expression X is less than or equal to Y

% X > Y is true if expression X is greater than Y

% Ordering on pairs (and tuples) is defined by the lexicographic ordering, as though

% through the clauses:

(A,_) < (B,_) :- A<B.

(A,C) < (A,D) :- C<D.

% (a,b,c) is an abbreviation for (a,(b,c))

% append(A,B,C) is true if C contains the elements of A followed by the elements of B

append([],L,L).

append([H|T],L,[H|R]) :-

append(T,L,R).

% reverse(L,R) true if R has same elements as L, in reverse order

reverse(L,R) :-

reverse3(L,[],R).

% reverse3(L,A,R) is true if R consists of the elements of L reversed followed by the elements of A

reverse3([],R,R).

reverse3([H|T],Acc,R) :-

reverse3(T,[H|Acc],R).

1

