Assignment Four: Logic Programming Introduction Solution

Question One

P2 = ilias ; P1 = lily, Day = friday, P2 = ilias ; P1 = ilias,

```
(a) The query is ?- assignment(A, march, D).
   Here are the results from the query:
   % swipl
   Welcome to SWI-Prolog (threaded, 64 bits, version 8.4.2)
   SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
   Please run ?- license. for legal details.
   For online help and background, visit https://www.swi-prolog.org
   For built-in help, use ?- help(Topic). or ?- apropos(Word).
   ?- [cs312_2024].
   true.
   ?- assignment(As,march,Day).
   As = as4,
   Day = 7;
   As = as5,
   Day = 14.
(b) Query is ?- ta(cs312,2024,P), email(P,E).
      There are no answers because the file doesn't specify the emails of the TAs.
(c) We could write a rule such as the following where dif(X,Y) is true if X and Y refer to different
   people.
   ?- office_hour(P1,Day,_,_), office_hour(P2,Day,_,_),dif(P1,P2).
   P1 = ilias,
   Day = wednesday,
   P2 = lily;
   P1 = lily,
   Day = wednesday,
```

Day = friday, P2 = lily ; false.

(Without the dif, it could return the same person who has office hours on one day. I used dif which is a built-in predicate that true when the symbols are different – which, in general, does not imply the individuals are different). You could write your own facts about dif for the given constants.

(d) Here is the trace:

```
?- office_hour(P1,Day,_,_), office_hour(P1,Day2,_,_),nextday(Day,Day2), pname(P1,N1).
P1 = ilias,
Day = wednesday,
Day2 = thursday,
N1 = "Ilias";
P1 = ilias,
Day = thursday,
Day2 = friday,
N1 = "Ilias";
false.
```

- (e) You can't define this given the language defined so far. There may be a TA called sam who is not listed and doesn't have any office hours. All of the given facts would be true, and yet the answer would be different. You could define a predicate such as ta_with_no_office_hours(sam) to indicate that sam is a TA with no office hours.
- (f) You need to know:
 - When classes start
 - What days of the week classes are on
 - Which dates are holidays
 - When classes end

Question Two

See http://www.cs.ubc.ca/~poole/cs312/2024/as4/plumbing_ws.pl

for a solution.

Figure 1 shows the interpretation for the symbols in (d).

Question Three

(a) The following table gives the atoms added and the clause responsible for one possible sequence of clauses selected.

Figure 1: The Plumbing Domain

Atom Added	Clause
outgrabe	outgrabe.
manxome	manxome.
to ves	$toves \leftarrow manxome.$
vorpal	$vorpal \leftarrow manxome.$
gyre	$gyre \leftarrow manxome.$
gimble	$gimble \leftarrow outgrabe.$
wabe	wabe.
slithy	$slithy \leftarrow gyre, gimble, wabe.$

(b) For the query ? - slithy, here is one failing derivation: Answer clause Clause to resolve

Clause to resolve
$slithy \leftarrow toves, brillig.$
$toves \leftarrow outgrabe, vorpal.$
outgrabe.
$vorpal \leftarrow manxome.$
manxome.
$brillig \leftarrow jubjub.$
FAIL

(c) For the query ? - slithy. Here is one successful derivation:

Answer clause	Clause to resolve	
$yes \leftarrow slithy$	slithy:-gyre, gimble, wabe.	
$yes \leftarrow gyre, gimble, wabe.$	gyre:-manxome.	
$yes \leftarrow manxome, gimble, wabe.$. manxome.	
$yes \leftarrow gimble, wabe.$	gimble:-outgrabe.	
$yes \leftarrow outgrabe, wabe.$	outgrabe.	
$yes \leftarrow wabe.$	wabe.	
$yes \leftarrow .$	SUCCESS!	
here is part of the trace		
Call: (8) brillig ? creep		
Call: (9) jubjub ? creep	(*)	
Fail: (9) jubjub ? creep	(**)	
Fail: (8) brillig ? creep		
Redo: (8) toves ? creep	(***)	
Call: (9) manxome ? creep		
Exit: (9) manxome ? creep	(****)	
(*) it is calling jujube after brillig because of the clause <i>brillig</i>		

q:-jubjub.

(**) jujube has no clauses so it fails. And then brillig fails as all of its clauses fail.

(***) toves needs to find another proof, so it calls the second one. SWI Prolog is reporting redo when it executes the down arrow (from fail to call).

(****) maxome succeeds as there is a fact for it.

```
(d) Figure
```


(e) There are 4 answers. There are 2 proofs for gyre, and 2 proofs for gimble. There is a proof for slithy for each combination of these.

Question Four

It should not have taken more than a few hours. Most of this should have been in understanding the material, not in doing busy work. I hope it was reasonable, and you learned something.

This question took about 3 minutes.