## Assignment Four: Logic Programming Introduction

Solution

## Question One

(a) The query is ?- assignment(A, march, D).

Here are the results from the query:
\% swipl
Welcome to SWI-Prolog (threaded, 64 bits, version 8.4.2)
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software.
Please run ?- license. for legal details.
For online help and background, visit https://www.swi-prolog.org
For built-in help, use ?- help(Topic). or ?- apropos(Word).
?- [cs312_2024].
true.
?- assignment(As,march,Day).
As = as4,
Day = 7 ;
As = as5,
Day $=14$.
(b) Query is ?- $\operatorname{ta}(\operatorname{cs} 312,2024, P)$, email ( $\mathrm{P}, \mathrm{E}$ ).

There are no answers becuase the file doesn't specify the emails of the TAs.
(c) We could write a rule such as the following where $\operatorname{dif}(\mathrm{X}, \mathrm{Y})$ is true if X and Y refer to different people.
?- office_hour(P1,Day,_,_), office_hour(P2,Day,_,_), dif(P1,P2).
P1 = ilias,
Day = wednesday,
P2 = lily ;
P1 = lily,
Day = wednesday,
P2 = ilias ;
P1 = lily,
Day = friday,
P2 = ilias ;
P1 = ilias,

```
Day = friday,
P2 = lily ;
false.
```

(Without the dif, it could return the same person who has office hours on one day. I used dif which is a built-in predicate that true when the symbols are different - which, in general, does not imply the individuals are different). You could write your own facts about dif for the given constants.
(d) Here is the trace:

```
?- office_hour(P1,Day,_,_), office_hour(P1,Day2,_,_),nextday(Day,Day2), pname(P1,N1).
P1 = ilias,
Day = wednesday,
Day2 = thursday,
N1 = "Ilias" ;
P1 = ilias,
Day = thursday,
Day2 = friday,
N1 = "Ilias" ;
false.
```

(e) You can't define this given the language defined so far. There may be a TA called sam who is not listed and doesn't have any office hours. All of the given facts would be true, and yet the answer would be different. You could define a predicate such as ta_with_no_office_hours(sam) to indicate that sam is a TA with no office hours.
(f) You need to know:

- When classes start
- What days of the week classes are on
- Which dates are holidays
- When classes end


## Question Two

See http://www.cs.ubc.ca/~poole/cs312/2024/as4/plumbing_ws.pl for a solution.

Figure 1 shows the interpretation for the symbols in (d).

## Question Three

(a) The following table gives the atoms added and the clause responsible for one possible sequence of clauses selected.


Figure 1: The Plumbing Domain

| Atom Added | Clause |
| :--- | :--- |
| outgrabe | outgrabe. |
| manxome | manxome. |
| toves | toves $\leftarrow$ manxome. |
| vorpal | vorpal $\leftarrow$ manxome. |
| gyre | gyre $\leftarrow$ manxome. |
| gimble | gimble $\leftarrow$ outgrabe. |
| wabe | wabe. |
| slithy | slithy $\leftarrow$ gyre, gimble, wabe. |

(b) For the query ? - slithy. here is one failing derivation:

| Answer clause | Clause to resolve |
| :--- | :--- |
| yes $\leftarrow$ slithy | slithy $\leftarrow$ toves, , rillig.. |
| yes $\leftarrow$ toves, brillig. | toves $\leftarrow$ outgrabe, vorpal.. |
| yes $\leftarrow$ outgrabe, vorpal, brillig. | outgrabe. |
| yes $\leftarrow$ vorpal, brillig. | vorpal $\leftarrow$ manxome. |
| yes $\leftarrow$ manxome, brillig. | manxome. |
| yes $\leftarrow$ brillig. | brillig $\leftarrow$ jubjub. |
| yes $\leftarrow$ jubjub. | FAIL |

(c) For the query ? - slithy. Here is one successful derivation:

| Answer clause | Clause to resolve |
| :--- | :--- |
| yes $\leftarrow$ slithy | slithy $:-$ gyre, gimble, wabe. |
| yes $\leftarrow$ gyre, gimble, wabe. | gyre $:$-manxome.. |
| yes $\leftarrow$ manxome, gimble, wabe. | manxome. |
| yes $\leftarrow$ gimble, wabe. | gimble $:$ outgrabe.. |
| yes $\leftarrow$ outgrabe, wabe. | outgrabe. |
| yes $\leftarrow$ wabe. | wabe. |
| yes $\leftarrow$. | SUCCESS! |

here is part of the trace
Call: (8) brillig ? creep
Call: (9) jubjub ? creep (*)
Fail: (9) jubjub ? creep (**)
Fail: (8) brillig ? creep
Redo: (8) toves ? creep ( $* * *$ )
Call: (9) manxome ? creep
Exit: (9) manxome ? creep ( $* * * *$ )
$\left(^{*}\right)$ it is calling jujube after brillig because of the clause brillig $:-j u b j u b$.
$\left({ }^{* *}\right)$ jujube has no clauses so it fails. And then brillig fails as all of its clauses fail.
$\left({ }^{* * *}\right)$ toves needs to find another proof, so it calls the second one. SWI Prolog is reporting redo when it executes the down arrow (from fail to call).
$(* * * *)$ maxome succeeds as there is a fact for it.
(d) Figure

(e) There are 4 answers. There are 2 proofs for gyre, and 2 proofs for gimble. There is a proof for slithy for each combination of these.

## Question Four

It should not have taken more than a few hours. Most of this should have been in understanding the material, not in doing busy work. I hope it was reasonable, and you learned something.

This question took about 3 minutes.

