
CPSC 312 Functional and Logic Programming Spring 2024

Assignment Three: More Fun with Haskell
Due: 11:59pm, 6 February 2024.

You may do this question either alone or with a partner (i.e., in a group of 1 or 2). Make sure
you both understand and can explain your solution. If you are doing this in a group of size 2, you
should do two of questions 1-3, and a group of one should do one of them.

Submit your answers in one or more text files (one file for each question 1-3 you did) to using
Canvas. Make sure you name(s), student number(s) is at the top of each file. Each file should run
with Haskell Platform. Your code needs comments that include the specification of the meaning
of all functions. The explanations should be comments in the Haskell file. Both students need to
submit to Canvas.

Question One

The game of “twenty questions” lets a user ask yes-no question to find an entity (object) of interest.
If the system cannot find the entity, it asks for a question that distinguishes the entity the user
thought of from the one it found. Thus it can learn from its mistakes. David started a program but
didn’t get it finished. It can be found at https://www.cs.ubc.ca/~poole/cs312/2024/haskell/
TwentyQs.hs

(a) Finish the program so that is asks for the new entity and a question, and uses them to expand
the tree. It should have a behaviour something like (note that this has been reformatted to
fit):

*TwentyQs> go

Do you want to play 20 questions?

yes

Think of an entity

Is it living?

yes

Is it a person?

yes

Is it Justin Bieber?

no

What were you thinking of?

Margaret Atwood

Give a question for which the answer is yes for Margaret Atwood

and no for Justin Bieber

Has the person written multiple award-winning novels?

Do you want to play 20 questions?

no

QNode "Is it living?"

(QNode "Is it a person?"

(QNode "Has the person written multiple award-winning novels?"

(QLeaf "Margaret Atwood") (QLeaf "Justin Bieber"))

1

https://www.cs.ubc.ca/~poole/cs312/2024/haskell/TwentyQs.hs
https://www.cs.ubc.ca/~poole/cs312/2024/haskell/TwentyQs.hs


(QLeaf "Tahlequah (J-35), a southern resident killer whale"))

(QNode "Is it a physical object?"

(QLeaf "Whistler") (QLeaf "CPSC 312"))

*TwentyQs>

(b) On some systems, the built-in function getLine does not work very well for interaction as it
reports all of the characters typed, instead of allowing the user to delete characters that are
mistakes. Write a function fixdel that removes deleted characters, such as:

*TwentyQs> str = "abc\DELd\DEL\DELefg\DELh"

*TwentyQs> fixdel str

"aefh"

Incorporate this into to your implementation of twenty questions. Note that this will not
change what is echoed on the terminal.

Question Two

A priority queue is a multiset where, elements can be added to (pushed onto) the queue and a
smallest element can be removed and returned with a pop operation. For imperative languages
a heap is used to implement a priority queue (with side effects). A heap is a representation of a
binary tree where the element at the root of each subtree is less than or equal to the values of its
children (and so also less then or equal to its descendents).

David made a quick implementation of a priority queue implementation at https://www.cs.
ubc.ca/~poole/cs312/2024/haskell/PQ.hs (you can ignore the module declaration at the start
now). He also implemented a version of heapsort (to sort a list, add the elements to a priority
queue and then remove them one at at time) which also reports the size and depth of the priority
queue created.

Having balanced trees is supposed to increase performance, but the trees are not balanced. One
idea that David had, was to have a tree where the left tree is either the same size or has one element
more than the right tree. So when an element is added it should be added to the right tree and
then the left and right trees are swapped (which will maintain the invariant). When an element is
removed from a tree, it is preferable (but not always possible) to remove it from the left tree and
then swap left and right trees.

(a) Implement this simple idea. It should make the depth of the tree in psort smaller. Does it
improve performance? (Try it for a size of list where there is a non-trivial runtime.)

(b) Does the simple method of just swapping subtrees guarantee to make a balanced tree? Give
an example where the tree is not balanced. Challenge part: implement it so that it is always
balanced. Does this improve performance?

(c) What if we want to have a key-value pair where the comparison is only on the key. How can
this be done without changing the code? Hint: create a new datatype that implements Ord.

(d) Why is one advantage of this queue representation beyond Haskell? Why might someone
want to use this representation than a heap even in an imperative programming language?

2

https://www.cs.ubc.ca/~poole/cs312/2024/haskell/PQ.hs
https://www.cs.ubc.ca/~poole/cs312/2024/haskell/PQ.hs


Question Three

(a) Write a function splitsep that takes a Boolean separator function, a list and constructs a list
of the elements between the separators.

*Main> :type splitsep

splitsep :: (a -> Bool) -> [a] -> [[a]]

*Main> splitsep (==’,’) "comma,separated,list,as,in,a,csv,file"

["comma","separated","list","as","in","a","csv","file"]

*Main> splitsep (==’,’) "csv,,with,missing,elts,,,"

["csv","","with","missing","elts","","",""]

*Main> splitsep (‘elem‘ " ,.?!") "What? is this thing? ... called Love."

["What","","is","this","thing","","","","","","called","Love",""]

*Main> splitsep (==’,’) []

[""]

*Main> splitsep (\ x -> mod x 2 == 0) [1,3,4,5,7,9,8,8,55,45,48]

[[1,3],[5,7,9],[],[55,45],[]]

(b) Write a program that uses splitsep to read in a simple CSV file (comma separated values)
and output a list of list of strings where the outside lists are separated by newlines (’\n’)
and the inside lists are separated by commas in the file. That is, first split on ’\n’ then split
on ’,’.

For example reading the CSV file containing:

Day,Month,Received,Sold

12,May,200,20

10,July,,23

should return

[["Day", "Month", "Received", "Sold"], ["12", "May", "200", "20"],

["10", "July", "", "23"]]

To read a file, you can use

file <- readFile filename

within a do block, where filename is the name of the file, and file is a string that is the
contents of the file. The variable file can then be used in other expressions (in particular
involving splitsep).

(c) Categorize each value as to whether it is number, a string or missing (e.g., using FValue in
lecture 9). readMaybe is useful

ghci> import Text.Read (readMaybe)

ghci> (readMaybe "1234") :: Maybe Integer

Just 1234

ghci> (readMaybe "12gh34") :: Maybe Integer

Nothing

For more of a challenge, determine the type of every column in a CSV file. For example,
if everything in a column can be interpretd as a real number, different machine learning
algorithms might be used than if some are real and others are not.

3



Question Four

For each question, specify how long you spend on it, and what you learned. Was the question
reasonable? (This question is part of the assignment, so please do it!)

4


