CPSC 312 Functional and Logic Programming Jan-Apr 2024

Assignment T'wo: Haskell Lists and Higher-order functions
Due: 11:59pm, Tuesday 23 January 2024.

You may do this question either alone or with a partner (i.e., in a group of 1 or 2). Make sure you
both understand and can explain your solution.

Submit your answers in a text file using Canvas. Make sure you name(s), student number(s) is
at the top of each file. The file should run with Haskell Platform. Your code needs comments that
include the specification of the meaning of all functions. The explanations should be comments in
the Haskell file. Both members of a pair should submit the same file.

Question One

(a) Consider the program

tails []1 = [[]1]

tails (e:r) = (e:r):tails(r)
i) What is the type of tails

ii) What is the value of tails "happy"

)
iii) What is the type of tails "happy"
)

iv) Can tails be implemented by foldr or foldl with lambda and : (and no recursion)? If

so, give a definition (call it tails1), if not, explain why not.
(b) Consider the definition:

doif £ g [1 = []
doif f g (h:t)
| fh=gh: doif f gt
| otherwise = h : doif f g t

i) What is the inferred type of doif?
ii) what is the value of
doif even (‘div‘ 2) [11,22,33,44,55,66]

iii) Using doif, assuming only the functions elem (which tests whether a value is an element
of a list), and toUpper (which makes a character into upper-case, defined below), write
a non-recursive function capvowel that takes a string capitalizes all vowels (a,e,i,o,u),
with the following behaviour:

toUpper :: Char -> Char

toUpper x = toEnum(fromEnum x - fromEnum ’a’ + fromEnum ’A’°)
*Main> capvowel "abcdefghij"

"AbcdEfghIj"

*Main> capvowel [’a’..’z’]

"AbcdEfghI jklmnOpqrstUvuxyz"

iv) Implement doif using list comprehensions. You may only also use lambda (\) and guards
(or if-then-else), and constructors : and []. Call it doifl.

v) Implement doif using either foldl or foldr. You may only also use lambda (\) and guards
(or if-then-else), and constructors : and [|. Call in doif2.

Question Two

Implement the following without using recursion, but using only list comprehensions, foldr and/or

foldl.
Bool,

You can also use tails (from Question 1), lambda, guards, if-then-else, functions defined in
Num, Fractional, Integral, Eq, Ord, as well as list functions elem, head, tail, !!. Include the

most general type that makes sense.
Groups of two should do four parts. Groups of one should do three parts. (Everyone is encour-
aged to try all parts, but not all parts are equally straightforward).

(a)
(b)

()

Implement harmonic from the previous assignment.
Implement myremoveduplicates which removes duplicates from a list. For example:

myremoveduplicates "abacad" => "bcad"
myremoveduplicates [7,3,2,1,3,2,2,1,1,3,7,8] => [2,1,3,7,8]
Implement myordered st that is True if list Ist is ordered (by <).

myordered "abcdeefg" => True
myordered "ba" => False

myreplace x y lst replaces all occurrences of x in list Ist with y. For example,

myreplace 7 3 [7,0,7,1,7,2,7,3] => [3,0,3,1,3,2,3,3]

myreplace J a,) X) nn => nn

myreplace ’a’ ’x’ "abacad" => "xbxcxd"

Implement myapply Ist sub where sub is a list of (z,y) pairs, replaces each occurrence of x
by y in Ist.

myapply "abcdec" [(’a’,’f’), (°c’,’3’), (°g’,’7’)] => "fb3de3"

myapply "baab" [()a) s ’b’) s (;b; s ;a;)] => "abba“

Question Three

For each question, specify how long you spend on it, and what you learned. Was the question
reasonable? (This question is part of the assignment, so please do it!)

