
Computational Intelligence Chapter 8, Lecture 3, Page 1

Situation Calculus

• State-based representation where the states are denoted

by terms.

• A situation is a term that dentotes a state.

• There are two ways to refer to states:

init denotes the initial state

do(A, S) denotes the state resulting from doing

actionA in stateS, if it is possible to doA in S.

• A situation also encodes how to get to the state it denotes.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 2

Example States

• init

• do(move(rob, o109, o103), init)

• do(move(rob, o103, mail),

do(move(rob, o109, o103),

init)).

• do(pickup(rob, k1),

do(move(rob, o103, mail),

do(move(rob, o109, o103),

init))).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 3

Using the Situation Terms

• Add an extra term to each dynamic predicate indicating

the situation.

• Example Atoms:

at(rob, o109, init)

at(rob, o103, do(move(rob, o109, o103), init))

at(k1, mail, do(move(rob, o109, o103), init))

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 4

Axiomatizing using the Situation Calculus

• You specify what is true in theinitial state using axioms

with init as the situation parameter.

• Primitive relationsare axiomatized by specifying what

is true in situationdo(A, S) in terms of what holds in

situationS.

• Derived relationsare defined using clauses with a free

variable in the situation argument.

• Static relationsare defined without reference to the

situation.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 5

Initial Situation

sitting_at(rob, o109, init).

sitting_at(parcel, storage, init).

sitting_at(k1, mail, init).

Derived Relations

adjacent(P1, P2, S) ←
between(Door, P1, P2) ∧
unlocked(Door, S).

adjacent(lab2, o109, S).

· · ·

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 6

When are actions possible?

poss(A, S) is true if actionA is possible in stateS.

poss(putdown(Ag, Obj), S) ←
carrying(Ag, Obj, S).

poss(move(Ag, Pos1, Pos2), S) ←
autonomous(Ag) ∧
adjacent(Pos1, Pos2, S) ∧
sitting_at(Ag, Pos1, S).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 7

Axiomatizing Primitive Relations

Example: Unlocking the door makes the door unlocked:

unlocked(Door, do(unlock(Ag, Door), S)) ←
poss(unlock(Ag, Door), S).

Frame Axiom: No actions lock the door:

unlocked(Door, do(A, S)) ←
unlocked(Door, S) ∧
poss(A, S).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 8

Example: axiomatizingcarried

Picking up an object causes it to be carried:

carrying(Ag, Obj, do(pickup(Ag, Obj), S)) ←
poss(pickup(Ag, Obj), S).

Frame Axiom: The object is being carried if it was being

carried before unless the action was to put down the object:

carrying(Ag, Obj, do(A, S)) ←
carrying(Ag, Obj, S) ∧
poss(A, S) ∧
A 6= putdown(Ag, Obj).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 9

More General Frame Axioms

The only actions that undositting_at for objectObj is when

Obj moves somewhere or when someone is picking upObj.

sitting_at(Obj, Pos, do(A, S)) ←
poss(A, S) ∧
sitting_at(Obj, Pos, S) ∧
∀Pos1 A 6= move(Obj, Pos, Pos1) ∧
∀Ag A 6= pickup(Ag, Obj).

The last line is equivalent to:

∼∃Ag A= pickup(Ag, Obj)

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 10

which can be implemented as

sitting_at(Obj, Pos, do(A, S)) ←
· · · ∧ · · · ∧ · · · ∧
∼is_pickup_action(A, Obj).

with the clause:

is_pickup_action(A, Obj) ←
A = pickup(Ag, Obj).

which is equivalent to:

is_pickup_action(pickup(Ag, Obj), Obj).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 11

STRIPS and the Situation Calculus

• Anything that can be stated in STRIPS can be stated in

the situation calculus.

• The situation calculus is more powerful. For example,

the “drop everything” action.

• To axiomatize STRIPS in the situation calculus, we can

use holds(C, S) to mean thatC is true in situationS.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 12

holds(C, do(A, W)) ←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold inW.

add_list(A, AL) ∧ C is on the

member(C, AL). addlist ofA.

holds(C, do(A, W)) ←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold inW.

delete_list(A, DL) ∧ C isn’t on the

notin(C, DL) ∧ deletelist ofA.

holds(C, W). C held beforeA.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑

http://www.cs.ubc.ca/spider/poole/ci.html

