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ABSTRACT
Recent years have witnessed a proliferation of large-scale
knowledge bases, including Wikipedia, Freebase, YAGO, Mi-
crosoft’s Satori, and Google’s Knowledge Graph. To in-
crease the scale even further, we need to explore automatic
methods for constructing knowledge bases. Previous ap-
proaches have primarily focused on text-based extraction,
which can be very noisy. Here we introduce Knowledge
Vault, a Web-scale probabilistic knowledge base that com-
bines extractions from Web content (obtained via analysis of
text, tabular data, page structure, and human annotations)
with prior knowledge derived from existing knowledge repos-
itories. We employ supervised machine learning methods for
fusing these distinct information sources. The Knowledge
Vault is substantially bigger than any previously published
structured knowledge repository, and features a probabilis-
tic inference system that computes calibrated probabilities
of fact correctness. We report the results of multiple studies
that explore the relative utility of the different information
sources and extraction methods.

Keywords
Knowledge bases; information extraction; probabilistic mod-
els; machine learning

1. INTRODUCTION

“The acquisition of knowledge is always of use to
the intellect, because it may thus drive out useless
things and retain the good. For nothing can be
loved or hated unless it is first known.”

– Leonardo da Vinci.
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In recent years, several large-scale knowledge bases (KBs)
have been constructed, including academic projects such as
YAGO [39], NELL [8], DBpedia [3], and Elementary/ Deep-
Dive [32], as well as commercial projects, such as those by
Microsoft1, Google2, Facebook3, Walmart [9], and others.
(See Section 7 for a detailed discussion of related work.)
These knowledge repositories store millions of facts about
the world, such as information about people, places and
things (generically referred to as entities).

Despite their seemingly large size, these repositories are
still far from complete. For example, consider Freebase, the
largest open-source knowledge base [4]. 71% of people in
Freebase have no known place of birth, and 75% have no
known nationality4. Furthermore, coverage for less common
relations/predicates can be even lower.

Previous approaches for building knowledge bases primar-
ily relied on direct contributions from human volunteers
as well as integration of existing repositories of structured
knowledge (e.g., Wikipedia infoboxes). However, these meth-
ods are more likely to yield head content, namely, frequently
mentioned properties of frequently mentioned entities. Suh
et al. [41] also observed that Wikipedia growth has essen-
tially plateaued, hence unsolicited contributions from hu-
man volunteers may yield a limited amount of knowledge
going forward. Therefore, we believe a new approach is
necessary to further scale up knowledge base construction.
Such an approach should automatically extract facts from
the whole Web, to augment the knowledge we collect from
human input and structured data sources. Unfortunately,
standard methods for this task (cf. [44]) often produce very
noisy, unreliable facts. To alleviate the amount of noise in
the automatically extracted data, the new approach should
automatically leverage already-cataloged knowledge to build
prior models of fact correctness.

In this paper, we propose a new way of automatically con-
structing a Web-scale probabilistic knowledge base, which
we call the Knowledge Vault, or KV for short. Like many
other knowledge bases, KV stores information in the form

1http://www.bing.com/blogs/site_blogs/b/search/
archive/2013/03/21/satorii.aspx
2http://www.google.com/insidesearch/features/
search/knowledge.html
3http://www.insidefacebook.com/2013/01/14/
facebook-builds-knowledge-graph-with-info-modules-
on-community-pages/
4Numbers current as of October 2013, cf. [28]. Freebase
data is publicly available at https://developers.google.
com/freebase/data.



of RDF triples (subject, predicate, object).An example is
</m/02mjmr, /people/person/place_of_birth /m/02hrh0_>,
where /m/02mjmr is the Freebase id for Barack Obama, and
/m/02hrh0_ is the id for Honolulu. Associated with each
such triple is a confidence score, representing the probabil-
ity that KV “believes” the triple is correct.

Entity types and predicates come from a fixed ontology,
which is similar to that used in other systems, such as YAGO
[39], NELL [8], DeepDive [32], and various systems partici-
pating in the TAC-KBP slot-filling competition [22]. Knowl-
edge bases that use a fixed ontology should be contrasted
with open information extraction (Open IE) approaches,
such as Reverb [12], which work at the lexical level. Open
IE systems usually have multiple redundant facts that are
worded differently, such as <Barack Obama, was born in,

Honolulu> and <Obama, place of birth, Honolulu>. In
contrast, KV separates facts about the world from their lex-
ical representation. This makes KV a structured repository
of knowledge that is language independent.

The contributions of this paper are threefold. First, the
Knowledge Vault is different from previous works on au-
tomatic knowledge base construction as it combines noisy
extractions from the Web together with prior knowledge,
which is derived from existing knowledge bases (in this pa-
per, we use Freebase as our source of prior data). This
approach is analogous to techniques used in speech recog-
nition, which combine noisy acoustic signals with priors de-
rived from a language model. KV’s prior model can help
overcome errors due to the extraction process, as well as
errors in the sources themselves. For example, suppose an
extractor returns a fact claiming that Barack Obama was
born in Kenya, and suppose (for illustration purposes) that
the true place of birth of Obama was not already known
in Freebase. Our prior model can use related facts about
Obama (such as his profession being US President) to infer
that this new fact is unlikely to be true. The error could be
due to mistaking Barack Obama for his father (entity res-
olution or co-reference resolution error), or it could be due
to an erroneous statement on a spammy Web site (source
error).

Second, KV is much bigger than other comparable KBs
(see Table 1). In particular, KV has 1.6B triples, of which
324M have a confidence of 0.7 or higher, and 271M have a
confidence of 0.9 or higher. This is about 38 times more than
the largest previous comparable system (DeepDive [32]),
which has 7M confident facts (Ce Zhang, personal communi-
cation). To create a knowledge base of such size, we extract
facts from a large variety of sources of Web data, including
free text, HTML DOM trees, HTML Web tables, and hu-
man annotations of Web pages. (Note that about 1/3 of the
271M confident triples were not previously in Freebase, so
we are extracting new knowledge not contained in the prior.)

Third, we perform a detailed comparison of the quality
and coverage of different extraction methods, as well as dif-
ferent prior methods. We also demonstrate the benefits of
using multiple extraction sources and systems. Finally, we
evaluate the validity of the closed world assumption, which
is often used to automatically evaluate newly extracted facts
given an existing knowledge base (see Section 6).

In the following sections, we describe the components of
KV in more detail. We then study the performance of each
part of the system in isolation and in combination, and
show that fusion of multiple complementary systems and

data sources considerably improves precision at a given re-
call level

2. OVERVIEW
KV contains three major components:

• Extractors: these systems extract triples from a huge
number of Web sources. Each extractor assigns a con-
fidence score to an extracted triple, representing un-
certainty about the identity of the relation and its cor-
responding arguments.

• Graph-based priors: these systems learn the prior
probability of each possible triple, based on triples
stored in an existing KB.

• Knowledge fusion: this system computes the prob-
ability of a triple being true, based on agreement be-
tween different extractors and priors.

Abstractly, we can view the KV problem as follows: we
are trying to construct a weighted labeled graph, which
we can view as a very sparse E × P × E 3d matrix G,
where E is the number of entities, P is the number of pred-
icates, and G(s, p, o) = 1 if there is a link of type p from
s to o, and G(s, p, o) = 0 otherwise. We want to compute
Pr(G(s, p, o) = 1|·) for candidate (s, p, o) triples, where the
probability is conditional on different sources of information.
When using extractions, we condition on text features about
the triple. When using graph-based priors, we condition on
known edges in the Freebase graph (obviously we exclude the
edge we are trying to predict!). Finally, in knowledge fusion,
we condition on both text extractions and prior edges.

We describe each of three components in more detail in the
following sections. Before that, we discuss our training and
test procedure, which is common to all three approaches.

2.1 Evaluation protocol
Using the methods to be described in Section 3, we extract

about 1.6B candidate triples, covering 4469 different types of
relations and 1100 different types of entities. About 271M
of these facts have an estimated probability of being true
above 90%; we call these“confident facts”. The resulting KB
is much larger than other automatically constructed KBs, as
summarized in Table 1.

To evaluate the quality of our methods, we randomly split
this data into a training set (80% of the data) and a test set
(20% of the data); we infer labels for these triples using the
method described below. To ensure that certain common
predicates (e.g., relating to geographical containment) did
not dominate the performance measures, we took at most
10k instances of each predicate when creating the test set.
We then pooled the samples from each predicate to get a
more balanced test set.

If the test set contains the triple (s, p, o), then the training
set is guaranteed not to contain the same triple. However,
it may contain (s, p, o′) or (s, p′, o) or (s′, p, o). For example,
suppose s is Barack Obama, p is father-of, and o is Sasha
Obama. Then the training set may contain the fact that
Barack is the father of Malia Obama, or that Barack lives in
the same place as Sasha Obama, etc. In graph terminology,
we are leaving out edges at random from the training set,
and asking how well we can predict their presence or absence.



Name # Entity types # Entity instances # Relation types # Confident facts (relation instances)
Knowledge Vault (KV) 1100 45M 4469 271M
DeepDive [32] 4 2.7M 34 7Ma

NELL [8] 271 5.19M 306 0.435Mb

PROSPERA [30] 11 N/A 14 0.1M
YAGO2 [19] 350,000 9.8M 100 4Mc

Freebase [4] 1,500 40M 35,000 637Md

Knowledge Graph (KG) 1,500 570M 35,000 18,000Me

Table 1: Comparison of knowledge bases. KV, DeepDive, NELL, and PROSPERA rely solely on extraction,
Freebase and KG rely on human curation and structured sources, and YAGO2 uses both strategies. Confident
facts means with a probability of being true at or above 0.9.

aCe Zhang (U Wisconsin), private communication
bBryan Kiesel (CMU), private communication
cCore facts, http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
dThis is the number of non-redundant base triples, excluding reverse predicates and “lazy” triples derived from flattening
CVTs (complex value types).
ehttp://insidesearch.blogspot.com/2012/12/get-smarter-answers-from-knowledge_4.html

An alternative approach to constructing the test set would
have been to leave out all edges emanating from a particu-
lar node. However, in such a case, the graph-based models
would have no signal to leverage. For example, suppose we
omitted all facts about Barack Obama, and asked the sys-
tem to predict where he lives, and who his children are.
This would be possible given text extractions, but impossi-
ble given just a prior graph of facts. A compromise would
be to omit all edges of a given type; for example, we could
omit connections to all his children, but leave in other re-
lations. However, we think the random sampling scenario
more accurately reflects our actual use-case, which consists
of growing an existing KB, where arbitrary facts may be
missing.

2.2 Local closed world assumption (LCWA)
All the components of our system use supervised machine

learning methods to fit probabilistic binary classifiers, which
can compute the probability of a triple being true. We give
the details on how these classifiers are constructed in the
following sections. Here, we describe how we determine the
labels (we use the same procedure for the training and test
set).

For (s, p, o) triples that are in Freebase, we assume the
label is true. For triples that do not occur in Freebase, we
could assume the label is false (corresponding to a closed
world assumption), but this would be rather dangerous, since
we know that Freebase is very incomplete. So instead, we
make use a somewhat more refined heuristic that we call the
local closed world assumption.

To explain this heuristic, let us define O(s, p) as the set
of existing object values for a given s and p. This set will
be a singleton for functional (single-valued) predicates such
as place of birth, but can have multiple values for general
relations, such as children; of course, the set can also be
empty. Now, given a candidate triple (s, p, o), we assign
its label as follows: if (s, p, o) ∈ O(s, p), we say the triple
is correct; if (s, p, o) 6∈ O(s, p), but |O(s, p)| > 0, we say
the triple is incorrect (because we assume the KB is locally
complete for this subject-predicate pair); if O(s, p) is empty,
we do not label the triple, and we throw it out of our training
/ test set.

This heuristic is also used in previous works such as [15].

We empirically evaluate its adequacy in Section 6, by com-
paring to human-labeled data. There are more sophisticated
methods for training models that don’t make this assump-
tion (such as [28, 36]), but we leave the integration of such
methods into KV to future work.

3. FACT EXTRACTION FROM THE WEB
In this section, we summarize the extractors that we use to

build KV, and then we evaluate their relative performance.

3.1 Extraction methods

3.1.1 Text documents (TXT)
We use relatively standard methods for relation extraction

from text (see [16] for a recent overview), but we do so at a
much larger scale than previous systems.

We first run a suite of standard NLP tools over each doc-
ument. These perform named entity recognition, part of
speech tagging, dependency parsing, co-reference resolution
(within each document), and entity linkage (which maps
mentions of proper nouns and their co-references to the cor-
responding entities in the KB). The in-house named entity
linkage system we use is similar to the methods described in
[18].

Next, we train relation extractors using distant supervi-
sion [29]. Specifically, for each predicate of interest, we ex-
tract a seed set of entity pairs that have this predicate, from
an existing KB. For example, if the predicate is married_to,
the pairs could be (BarackObama, MichelleObama) and (Bill-

Clinton, HillaryClinton). We then find examples of sen-
tences in which this pair is mentioned, and extract features/
patterns (either from the surface text or the dependency
parse) from all of these sentences. The features that we use
are similar to those described in [29].

In a bootstrapping phase, we look for more examples of
sentences with these patterns occurring between pairs of en-
tities of the correct type. We use the local closed world
assumption to derive labels for the resulting set of extrac-
tions. Once we have a labeled training set, we fit a binary
classifier (we use logistic regression) for each predicate inde-
pendently in parallel, using a MapReduce framework. We
have trained extractors for 4469 predicates, which is much
more than previous machine reading systems.



3.1.2 HTML trees (DOM)
A somewhat different way to extract information from

Web pages is to parse their DOM trees. These can either
come from text pages, or from “deep web” sources, where
data are stored in underlying databases and queried by fill-
ing HTML forms; these sources together generate more than
1B pages of data in DOM tree format [7]. To extract triples
from DOM trees, we train classifiers as in the text case, ex-
cept that we derive features connecting two entities from the
DOM trees instead of from the text. Specifically, we use the
lexicalized path (along the tree) between the two entities as
a feature vector. The score of the extracted triples is the
output of the classifier.

3.1.3 HTML tables (TBL)
There are over 570M tables on the Web that contain rela-

tional information (as opposed to just being used for visual
formatting) [6]. Unfortunately, fact extraction techniques
developed for text and trees do not work very well for ta-
bles, because the relation between two entities is usually
contained in the column header, rather than being close by
in the text/ tree. Instead, we use the following heuristic
technique. First, we perform named entity linkage, as in the
text case. Then we attempt to identify the relation that is
expressed in each column of the table by looking at the en-
tities in each column, and reasoning about which predicate
each column could correspond to, by matching to Freebase,
as in standard schema matching methods [42]. Ambiguous
columns are discarded. The score of the extracted triple re-
flects the confidence returned by the named entity linkage
system.

3.1.4 Human Annotated pages (ANO)
There are a large number of webpages where the web-

master has added manual annotations following ontologies
from schema.org, microformats.org, openGraphProtocol.org,
etc. In this paper, we use schema.org annotations. Many
of these annotations are related to events or products, etc.
Such information is not currently stored in the knowledge
vault. So instead, in this paper we focus on a small sub-
set of 14 different predicates, mostly related to people. We
define a manual mapping from schema.org to the Freebase
schema for these different predicates. The score of the ex-
tracted triple reflects the confidence returned by the named
entity linkage system (the same one we use for TXT triples).

3.2 Fusing the extractors
We have described 4 different fact extraction methods. A

simple way to combine these signals is to construct a feature

vector ~f(t) for each extracted triple t = (s, p, o), and then

to apply a binary classifier to compute Pr(t = 1|~f(t)). For
simplicity and speed, we fit a separate classifier for each
predicate.

The feature vector is composed of two numbers for each
extractor: the square root5 of the number of sources that the
extractor extracted this triple from, and the mean score of

5The motivation for using
√
n, where n is the number of

sources, is to reduce the effect of very commonly expressed
facts (such as the birth place of Barack Obama). Re-
sults are similar if we use log(1 + n). Note that we per-
form de-duplication of sources before running the extraction
pipelines.

Figure 1: True probability vs estimated probability
for each triple in KV.

the extractions from this extractor, averaging over sources
(or 0 if the system did not produce this triple).

The classifier learns a different weight for each compo-
nent of this feature vector, and hence can learn the relative
reliabilities of each system. In addition, since we fit a sep-
arate classifier per predicate, we can model their different
reliabilities, too.

The labels for training the fusion system come from ap-
plying the local closed world assumption to the training set.
Since this is a very low-dimensional classification problem,
we initially used a linear logistic regression model. How-
ever, we observed considerably better performance by using
boosted decision stumps [35]. This kind of classifier can
learn to quantize the features into bins, and thus learn a
non-linear decision boundary.

3.3 Calibration of the probability estimates
The confidence scores from each extractor (and/or the

fused system) are not necessarily on the same scale, and
cannot necessarily be interpreted as probabilities. To alle-
viate this problem, we adopt the standard technique known
as Platt Scaling (named after [33]), which consists of fitting
a logistic regression model to the scores, using a separate
validation set. Figure 1 shows that our (fused) probability
estimates are well-calibrated, in the following sense: if we
collect all the triples that have a predicted probability of 0.9,
then we find that about 90% of them are indeed true. Each
individual extractor is also calibrated (results not shown).

3.4 Comparison of the methods
Using the four extractors described earlier applied to a

very large web corpus, we extract about 1.6B triples. Ta-
ble 2 shows the number of triples from each system. We see
that the DOM system extracts the largest number of triples
overall (about 1.2B), of which about 94M (or 8%) are high
confidence (with a probability of being true at or above 0.9;
see the penultimate column of Table 2). The TBL system
extracts the least number of triples overall (about 9.4M).
One reason for this is that very few columns in webtables
(only 18% according to [17]) map to a corresponding Free-
base predicate. The ANO and TXT systems both produce
hundreds of millions of triples.

In addition to measuring the number of triples at different
confidence levels, it is interesting to consider the area under
the ROC curve (AUC score). This score is equal to the prob-
ability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one. We
computed the AUC scores for the different extraction meth-



System # # > 0.7 # > 0.9 Frac. >0.9 AUC
TBL 9.4M 3.8M 0.59M 0.06 0.856
ANO 140M 2.4M 0.25M 0.002 0.920
TXT 330M 20M 7.1M 0.02 0.867
DOM 1200M 150M 94M 0.08 0.928
FUSED-EX. 1600M 160M 100M 0.06 0.927

Table 2: Performance of different extraction sys-
tems.

Figure 2: Predicted probability of each triple vs. the
number of systems that predicted it. Solid blue line:
correct (true) triples. Dotted red line: incorrect
(false) triples.

ods on different test sets, namely, only using the extractions
produced by each system (obviously, the test sets were dis-
tinct from the training sets). The test set for computing the
AUC score for the fused extractors was the union of all the
test sets of the individual systems.

We see that the DOM system has the highest AUC score,
so although it produces a large number of low confidence
triples, the system “knows” that these are likely to be false.
The table also illustrates the benefits of fusing multiple ex-
tractors: we get about 7% more high confidence triples,
while maintaining a high AUC score (see the last row of
the table). Not surprisingly, however, the performance of
the fusion system is dominated by that of the DOM system.
In Section 5, we shall show much greater gains from fusion,
when we combine graph priors with extractors.

3.5 The beneficial effects of adding more evi-
dence

Figure 2 shows how the overall predicted probability of
each triple changes as more systems extract it. When no
systems extract a given triple, we rely on our prior model
(described in Section 4); averaging over all the triples, we
see that the prior probability for the true triples is about 0.5,
whereas the prior probability for the false triples is close to
0. As we accumulate more evidence in favor of the triple,
our belief in its correctness increases to near 1.0 for the
true triples; for the false triples, our belief also increases,
although it stays well below 0.5.

Figure 3 shows how the probability of a triple increases
with the number of sources where the triple is seen. Again,
our final belief in true triples is much higher than in false

Figure 3: Predicted probability of each triple vs.
the number of unique web sources that contain this
triple (axis truncated at 50 for clarity).

triples. To prevent over-counting of evidence, we only count
each triple once per domain, as opposed to once per URL;
for example, if we extract a triple asserting that Barack
Obama was born in Kenya from myblogger.com/page1 and
myblogger.com/page2, we only count this once.

4. GRAPH-BASED PRIORS
As mentioned in the introduction, facts extracted from

the Web can be unreliable. A good way to combat this is
to use prior knowledge, derived from other kinds of data.
In this paper, we exploit existing triples in Freebase to fit
prior models, which can assign a probability to any possible
triple, even if there is no corresponding evidence for this fact
on the Web (cf. [2]). This can be thought of as link predic-
tion in a graph. That is, we observe a set of existing edges
(representing predicates that connect different entities), and
we want to predict which other edges are likely to exist. We
have tried two different approaches to solving this problem,
which we describe below.

4.1 Path ranking algorithm (PRA)
One way to perform link prediction is to use the path

ranking algorithm of [24]. Similar to distant supervision,
we start with a set of pairs of entities that are connected by
some predicate p. PRA then performs a random walk on the
graph, starting at all the subject (source) nodes. Paths that
reach the object (target) nodes are considered successful.
For example, the algorithm learns that pairs (X,Y ) which
are connected by a marriedTo edge often also have a path of

the form X
parentOf−−−−−−→ Z

parentOf←−−−−−− Y , since if two people share
a common child, they are likely to be married. The quality
of these paths can be measured in terms of their support
and precision, as in association rule mining (cf., [15]).

The paths that PRA learns can be interpreted as rules.
For example, consider the task of predicting where someone
went to college. The algorithm discovers several useful rules,
shown in Table 3. In English, the first rule says: a person
X is likely to have attended school S if X was drafted from
sports team T , and T is from school S. The second rule
says: a person is likely to attend the same school as their
sibling.



F1 P R W Path
0.03 1 0.01 2.62 /sports/drafted-athlete/drafted,/sports/sports-league-draft-pick/school

0.05 0.55 0.02 1.88 /people/person/sibling-s, /people/sibling-relationship/sibling, /people/person/education, /education/education/institution

0.06 0.41 0.02 1.87 /people/person/spouse-s, /people/marriage/spouse, /people/person/education, /education/education/institution

0.04 0.29 0.02 1.37 /people/person/parents, /people/person/education, /education/education/institution

0.05 0.21 0.02 1.85 /people/person/children, /people/person/education, /education/education/institution

0.13 0.1 0.38 6.4 /people/person/place-of-birth, /location/location/people-born-here, /people/person/education, /education/education/institution

0.05 0.04 0.34 1.74 /type/object/type, /type/type/instance, /people/person/education, /education/education/institution

0.04 0.03 0.33 2.19 /people/person/profession, /people/profession/people-with-this-profession, /people/person/education, /education/education/institution

Table 3: Some of the paths learned by PRA for predicting where someone went to college. Rules are sorted
by decreasing precision. Column headers: F1 is the harmonic mean of precision and recall, P is the precision,
R is the recall, W is the weight given to this feature by logistic regression.

Since multiple rules or paths might apply for any given
pair of entities, we can combine them by fitting a binary
classifier (we use logistic regression). In PRA, the features
are the probabilities of reaching O from S following differ-
ent types of paths, and the labels are derived using the
local closed world assumption. We can fit a classifier for
each predicate independently in parallel. We have trained
prior predictors for 4469 predicates using Freebase as train-
ing data. At test time, given a new (s, p, o) triple, we look
up all the paths for predicate p chosen by the learned model,
and perform a walk (on the training graph) from s to o via
each such path; this gives us a feature value that can be
plugged in to the classifier.

The overall AUC is 0.884, which is less than that of the
fused extractor system (0.927), but is still surprisingly high.

4.2 Neural network model (MLP)
An alternative approach to building the prior model is

to view the link prediction problem as matrix (or rather,
tensor) completion. In particular, the original KB can be
viewed as a very sparse E × P × E 3d matrix G, where E
is the number of entities, P is the number of predicates,
and G(s, p, o) = 1 if there is a link of type p from s to
o, and G(s, p, o) = 0 otherwise. We can perform a low-
rank decomposition of this tensor by associating a latent
low dimensional vector to each entity and predicate, and
then computing the elementwise inner product:

Pr(G(s, p, o) = 1) = σ

(
K∑

k=1

uskwpkvok

)
(1)

where σ(x) = 1/(1+e−x) is the sigmoid or logistic function,
and K ∼ 60 is the number of hidden dimensions. Here
~us, ~wp and ~vo are K-dimensional vectors, which embed the
discrete tokens into a low dimensional “semantic” space. If
we ignore the sigmoid transform (needed to produce binary
responses), this is equivalent to the PARAFAC method of
tensor decomposition [14, 5, 11].

A more powerful model was recently proposed in [37]; this
associates a different tensor with each relation, and hence
has the form

Pr(G(s, p, o) = 1) = σ
(
~βT
p f
[
~uT
s
~W 1:M

p ~vo
])

(2)

where f() is a nonlinear function such as tanh, ~βp is a K×1

vector, and ~Wm
p is a K × K matrix. Unfortunately, this

model requires O(KE + K2MP ) parameters, where M is
the number of “layers” in the tensor W .

In this paper, we considered a simpler approach where

we associate one vector per predicate, as in Equation 1, but
then use a standard multi layer perceptron (MLP) to capture
interaction terms. More precisely, our model has the form

Pr(G(s, p, o) = 1) = σ
(
~βT f

[
~A [~us, ~wp, ~vo]

])
(3)

where ~A is a L × (3K) matrix (where the 3K term arises
from the K-dimensional ~us and ~wp and ~vo) representing the

first layer weights (after the embeddings), and ~β is a L × 1
vector representing the second layer weights. (We set L =
K = 60.) This has only O(L+LK+KE+KP ) parameters,
but achieves essentially the same performance as the one in
Equation 2 on their dataset.6

Having established that our MLP model is comparable to
the state of the art, we applied it to the KV data set. Sur-
prisingly, we find that the neural model has about the same
performance as PRA when evaluated using ROC curves (the
AUC for the MLP model is 0.882, and for PRA is 0.884).

To illustrate that the neural network model learns a mean-
ingful “semantic” representation of the entities and predi-
cates, we can compute the nearest neighbors of various items
in the a K-dimensional space. It is known from previous
work (e.g., [27]) that related entities cluster together in the
space, so here we focus on predicates. The results are shown
in Table 4. We see that the model learns to put semanti-
cally related (but not necessarily similar) predicates near
each other. For example, we see that the closest predicates
(in the ~w embedding space) to the ’children’ predicate are
’parents’, ’spouse’ and ’birth-place’.

4.3 Fusing the priors
We can combine the different priors together using the fu-

sion method described in Section 3.2. The only difference
is the features that we use, since we no longer have any ex-
tractions. Insead, the feature vector contains the vector of
confidence values from each prior system, plus indicator val-
ues specifying if the prior was able to predict or not. (This
lets us distinguish a missing prediction from a prediction
score of 0.0.) We train a boosted classifier using these sig-
nals, and calibrate it with Platt Scaling, as before. Fusing
the two prior methods helps performance, since they have
complementary strengths and weaknesses (different induc-
tive biases): the AUC of the fused system is 0.911.

6More precisely, [37] reported an 88.9% accuracy on the sub-
set of Freebase data they have worked with (75,043 entities,
13 relations) when they replaced entities such as Barack-
Obama by their constituting words Barack and Obama. Apply-
ing the same technique of replacing entities with consituting
words, our simpler model got an accuracy of 89.1%.



Predicate Neighbor 1 Neighbor 2 Neighbor 3
children 0.4 parents 0.5 spouse 0.8 birth-place
birth-date 1.24 children 1.25 gender 1.29 parents
edu-end 1.41 job-start 1.61 edu-end 1.74 job-end

Table 4: Nearest neighbors for some predicates in
the 60d embedding space learned by the neural net-
work. Numbers represent squared Euclidean dis-
tance. Edu-start and edu-end represent the start
and end dates of someone attending a school or col-
lege. Similarly, job-start and job-end represent the
start and end dates of someone holding a particular
job.

Figure 4: ROC curves for the fused extractor, fused
prior, and fused prior + extractor. The numbers in
the legend are the AUC scores.

5. FUSING EXTRACTORS AND PRIORS
We have described several different fact extraction meth-

ods, and several different priors. We can combine all these
systems together using the fusion method described in Sec-
tion 3.2. Figure 4 shows the benefits of fusion quantitatively.
We see that combining prior and extractor together results
in a significant boost in performance.

To more clearly illustrate the effect of adding the prior,
Figure 5 plots the number of triples in each confidence bin
for the (fused) extractor, the (fused) prior, and the overall
system. We see that compared with considering only extrac-
tions, combining priors and extractors increases the number
of high confidence facts (those with a probability greater
than 0.9) from about 100M to about 271M. Of these, about
33% are new facts that were not yet in Freebase.

Figure 5 illustrates another interesting effect: when we
combine prior and extractor, the number of triples about
which we are uncertain (i.e., the predicted probability falling
in the range of [.3, .7]) has gone down; some of these triples
we now believe to be true (as we discussed previously), but
many we now believe to be false. This is a visual illustration
that the prior can reduce the false positive rate.

We now give a qualitative example of the benefits of com-
bining the prior with the extractor. The extraction pipeline
extracted the following triple:7

7Here the predicate is a conjunction of two primi-
tive predicates, /people/person/education and /educa-

Figure 5: Number of triples in KV in each confi-
dence bin.

<Barry Richter (/m/02ql38b),

/people/person/edu./edu/edu/institution,

Universty of Wisconsin-Madison (/m/01yx1b)>

The (fused) extraction confidence for this triple was just
0.14, since it was based on the following two rather indirect
statements:8

In the fall of 1989, Richter accepted a scholarship

to the University of Wisconsin, where he played for

four years and earned numerous individual accolades...

The Polar Caps’ cause has been helped by the impact of

knowledgable coaches such as Andringa, Byce and former

UW teammates Chris Tancill and Barry Richter.

However, we know from Freebase that Barry Richter was
born and raised in Madison, WI. This increases our prior
belief that he went to school there, resulting in a final fused
belief of 0.61.

6. EVALUATING LCWA
So far, we have been relying on the local closed world

assumption (LCWA) to train and test our system. However,
we know that this is just an approximation to the truth. For
example, Freebase often lists the top 5 or so actors for any
given movie, but it is unreasonable to assume that this list
is complete (since most movies have a cast of 10–20 actors);
this can result in false negatives (if our system predicts the
name of an actor that is not on the list). Conversely (but less
frequently), Freebase can contain errors, which can result in
false positives.

To assess the severity of this problem, we manually la-
beled a subset of our balanced test set, using an in-house
team of raters. This subset consisted of 1000 triples for 10

tion/education/institution, obtained by passing through
a complex value type (CVT) node, aka an anonymous or
“blank” node, representing the temporal event that Barry
attended Madison.
8Sources: http://www.legendsofhockey.net/
LegendsOfHockey/jsp/SearchPlayer.jsp?player=11377
and http://host.madison.com/sports/high-school/
hockey/numbers-dwindling-for-once-mighty-madison\
-high-school\-hockey-programs/article_
95843e00-ec34-11df-9da9-001cc4c002e0.html



Labels Prior Extractor Prior+ex
LCWA 0.943 0.872 0.959
Human 0.843 0.852 0.869

Table 5: AUC scores for the fused prior, extractor
and prior+extractor using different labels on the 10k
test set.

different predicates. We asked each rater to evaluate each
such triple, and to determine (based on their own research,
which can include web searches, looking at wikipedia, etc)
whether each triple is true or false or unknown; we discarded
the 305 triples with unknown labels.

We then computed the performance of our systems on
this test set, using both LCWA labels and the human la-
bels. In both cases, the system was trained on our full
training set (i.e., 80% of 1.6B) using LCWA labels. The
results are shown in Table 5. We see that the performance
on the human labeled data is lower, although not by that
much, indirectly justifying our use of the LCWA.

7. RELATED WORK
There is a growing body of work on automatic knowledge

base construction [44, 1]. This literature can be clustered
into 4 main groups: (1) approaches such as YAGO [39],
YAGO2 [19], DBpedia [3], and Freebase [4], which are built
on Wikipedia infoboxes and other structured data sources;
(2) approaches such as Reverb [12], OLLIE [26], and PRIS-
MATIC [13], which use open information (schema-less) ex-
traction techniques applied to the entire web; (3) approaches
such as NELL/ ReadTheWeb [8], PROSPERA [30], and
DeepDive/ Elementary [32], which extract information from
the entire web, but use a fixed ontology/ schema; and (4) ap-
proaches such as Probase [47], which construct taxonomies
(is-a hierarchies), as opposed to general KBs with multiple
types of predicates.

The knowledge vault is most similar to methods of the
third kind, which extract facts, in the form of disambiguated
triples, from the entire web. The main difference from this
prior work is that we fuse together facts extracted from text
with prior knowledge derived from the Freebase graph.

There is also a large body of work on link prediction in
graphs. This can be thought as creating a joint probability
model over a large set of binary random variables, where
G(s, p, o) = 1 if and only if there is a link of type p from s
to o. The literature can be clustered into three main kinds
of methods: (1) methods that directly model the correlation
between the variables, using discrete Markov random fields
(e.g., [23]) or continuous relaxations thereof (e.g., [34]); (2)
methods that use latent variables to model the correlations
indirectly, using either discrete factors (e.g., [48]) or contin-
uous factors (e.g., [31, 11, 20, 37]); and (3) methods that
approximate the correlation using algorithmic approaches,
such as random walks [24].

In the knowledge vault, we currently employ graph priors
of the second and third kind. In particular, our neural tensor
model is a continuous latent variable model, which is sim-
ilar to, but slightly different from, [37] (see Section 4.2 for
a discussion). Our PRA model is similar to the method de-
scribed in [24], except it is trained on Freebase instead of on
NELL. In addition, it uses a more scalable implementation.

Another related literature is on the topic of probabilistic

databases (see e.g., [40, 43]). KV is a probabilistic database,
and it can support simple queries, such as BarackObama

BornIn ?, which returns a distribution over places where
KV thinks Obama was born. However, we do not yet sup-
port sophisticated queries, such as JOIN or SELECT.

Finally, there is a small set of papers on representing un-
certainty in information extraction systems (see e.g., [45,
25]). KV also represents uncertainty in the facts it has ex-
tracted. Indeed, we show that its uncertainty estimates are
well-calibrated. We also show how they change as a function
of the amount of evidence (see Figure 2).

8. DISCUSSION
Although Knowledge Vault is a large repository of useful

knowledge, there are still many ways in which it can be
improved. We discuss some of these issues below.

Modeling mutual exclusion between facts. Currently
(for reasons of scalability) we treat each fact as an inde-
pendent binary random variable, that is either true or false.
However, in reality, many triples are correlated. For exam-
ple, for a functional relation such as born-in, we know there
can only be one true value, so the (s, p, oi) triples represent-
ing different values oi for the same subject s and predicate p
become correlated due to the mutual exclusion constraint. A
simple way to handle this is to collect together all candidate
values, and to force the distribution over them to sum to 1
(possibly allowing for some “extra” probability mass to ac-
count for the fact that the true value might not be amongst
the extracted set of candidates). This is similar to the no-
tion of an X-tuple in probabilistic databases [40]. Prelimi-
nary experiments of this kind did not work very well, since
the different oi often represent the same entity at different
levels of granularity. For example, we might have a fact that
Obama was born in Honolulu, and another one stating he
was born in Hawaii. These are not mutually exclusive, so
the naive approach does not work. We are currently inves-
tigating more sophisticated methods.

Modeling soft correlation between facts. For some
kinds of relations, there will be soft constraints on their val-
ues. For example, we know that people usually have between
0 and 5 children; there is of course a long tail to this distri-
bution, but it would still be surprising (and indicative of a
potential error) if we extracted 100 different children for one
person. Similarly, we expect the date of birth of a person
to be about 15 to 50 years earlier than the date of birth of
their child. Preliminary experiments using joint Gaussian
models to represent correlations amongst numerical values
show some promise, but we still need to fully integrate this
kind of joint prior into KV.

Values can be represented at multiple levels of ab-
straction. We can represent the world at different levels of
granularity. For example, we can say that Obama is born
in Honolulu, or in Hawaii, or in the USA. When matching
extracted facts with those stored in Freebase, we use prior
geographical knowledge to reason about compatibility. For
example, if we extract that Obama was born in Hawaii, and
we already know he was born in Honolulu, we consider this
a correct extraction. In the future, we would like to gener-
alize this approach to other kinds of values. For example,
if we extract that Obama’s profession is politician, and we
already know his profession is president, we should regard
the extracted fact as true, since it is implied by what we



already know.

Dealing with correlated sources. In Figure 3, we showed
how our belief in a triple increased as we saw it extracted
from more sources. This is of course problematic if we have
duplicated or correlated sources. Currently we have a very
simple solution to this, based on counting each domain only
once. In the future, we plan to deploy more sophisticated
copy detection mechanisms, such as those in [10].

Some facts are only temporarily true. In some cases,
the “truth” about a fact can change. For example, Google’s
current CEO is Larry Page, but from 2001 to 2011 it was
Eric Schmidt. Both facts are correct, but only during the
specified time interval. For this reason, Freebase allows some
facts to be annotated with beginning and end dates, by use
of the CVT (compound value type) construct, which rep-
resents n-ary relations via auxiliary nodes. (An alternative
approach is to reify the pairwise relations, and add extra
assertions to them, as in the YAGO2 system [19].) In the
future, we plan to extend KV to model such temporal facts.
However, this is non-trivial, since the duration of a fact is
not necessarily related to the timestamp of the correspond-
ing source (cf. [21]).

Adding new entities and relations. In addition to miss-
ing facts, there are many entities that are mentioned on
the Web but are not in Freebase, and hence not in KV ei-
ther. In order to represent such information, we need to
automatically create new entities (cf. [46]); this is work in
progress. Furthermore, there are many relations that are
mentioned on the Web but cannot be represented in the
Freebase schema. To capture such facts, we need to extend
the schema, but we need to do so in a controlled way, to
avoid the problems faced by open IE systems, which have
many redundant and synonymous relations. See [17] for one
possible approach to this problem.

Knowledge representation issues. The RDF triple for-
mat seems adequate for representing factual assertions (as-
suming a suitably rich schema), but it might be less ap-
propriate for other kinds of knowledge (e.g., representing
the difference between running and jogging, or between jazz
music and blues). There will always be a long tail of con-
cepts that are difficult to capture in any fixed ontology. Our
neural network is one possible way to provide semantically
plausible generalizations, but extending it to represent richer
forms of knowledge is left to future work.

Inherent upper bounds on the potential amount of
knowledge that we can extract. The goal of KV is to
become a large-scale repository of all of human knowledge.
However, even if we had a perfect machine reading system,
not all of human knowledge is available on the Web. In
particular, common sense knowledge may be hard to acquire
from text sources. However, we may be able to acquire such
knowledge using crowdsourcing techniques (c.f., [38]).

9. CONCLUSIONS
In this paper we described how we built a Web-scale prob-

abilistic knowledge base, which we call Knowledge Vault. In
contrast to previous work, we fuse together multiple extrac-
tion sources with prior knowledge derived from an existing
KB. The resulting knowledge base is about 38 times bigger
than existing automatically constructed KBs. The facts in
KV have associated probabilities, which we show are well-
calibrated, so that we can distinguish what we know with

high confidence from what we are uncertain about. In the fu-
ture, we hope to continue to scale KV, to store more knowl-
edge about the world, and to use this resource to help var-
ious downstream applications, such as question answering,
entity-based search, etc.
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