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We present a system which can recognize the contents
of your meal from a single image, and then predict its nu-
tritional contents, such as calories. The simplest version
assumes that the user is eating at a restaurant for which we
know the menu. In this case, we can collect images offline
to train a multi-label classifier. At run time, we apply the
classifier (running on your phone) to predict which foods
are present in your meal, and we lookup the corresponding
nutritional facts. We apply this method to a new dataset of
images from 23 different restaurants, using a CNN-based
classifier, significantly outperforming previous work. The
more challenging setting works outside of restaurants. In
this case, we need to estimate the size of the foods, as
well as their labels. This requires solving segmentation and
depth / volume estimation from a single image. We present
CNN-based approaches to these problems, with promising
preliminary results.

1. Introduction
Many people are interested in tracking what they eat to

help them achieve weight loss goals or manage their di-
abetes or food allergies. However, most current mobile
apps (MyFitnessPal, LoseIt, etc) require manual data entry,
which is tedious and time consuming. Consequently, most
users do not use such apps for very long [9]. Furthermore,
amateur self-reports of calorie intake typically have an error
rate that exceeds 400 calories per day [31, 5].

Rather than rely purely on data entry, several approaches
make use of a mobile camera to aid in this task. Cordeiro et
al. [8] records a photo of the meal but does not perform any
visual analysis of the image. Several previous approaches
[23] [29] rely on an expert nutritionists to analyse the im-
age offline (at the end of each day). Other approaches [26]
[25] use crowd sourcing to interpret the image, in lieu of an
expert. However, crowd sourcing is both costly and slow,
which hinders widespread adoption.

Several existing works [39, 21, 37] do use computer vi-
sion algorithms to reason about meals but only work in lab-
oratory conditions where the food items are well separated
and the number of categories is small. Furthermore, most of

these methods use traditional, hand-crafted visual features,
and only use machine learning at the classification stage.

The holy grail is an automatic method for estimating the
nutritional contents of a meal from one or more images. Un-
fortunately, even a perfect visual interpretation of the scene
cannot perfectly predict what is inside many foods, e.g., a
burrito. Consequently, an ideal system is one which cor-
rectly infers what is knowable and prompts the user for
feedback on inherantly ambiguous components of a meal.
Our goal is to minimize user effort for completing food di-
aries by offering smart ”auto-complete” functionality, rather
than complete automation.

In this paper, we take some initial steps towards such
a system. Our approach utilizes several deep learning al-
gorithms, tailored to run on a conventional mobile phone,
trained to recognize food items and predict the nutrional
contents meals from images taken “in the wild”. We re-
fer to this task as the “Im2Calories” problem, by analogy to
the recent line of work on the “Im2Text” problem. It should
be stressed, however, that we are interested in estimating
various other properties of a meal (such as fat and carbohy-
drates) and not just calories.

We start by building on [1], who developed a system
that can predict the calorie content of a meal from a sin-
gle image. Their key insight (also made in [2]) was that the
problem becomes much simpler if we restrict the setting to
one where the user is eating in a restaurant whose menu is
known. In this case, the problem reduces to one of detecting
which items, out of the K possible items on the menu, the
user has chosen. Each item typically has a standard serv-
ing size1, and we typically know its nutritional contents.2,
whereas getting nutritional information for arbitrary cooked
foods is much harder, as discussed in Section 7.

In Section 3, we show that by simply replacing the hand-
crafted features used in [1] with a convolutional neural net-
work (CNN), we can significantly improve performance,

1 There may be variants, but these are typically few in number (e.g.,
small, medium or large fries). Hence we an treat these as different items.

2 The US Food and Drug Administration has passed a law requiring
all major chain restaurants to post the nutritional contents of their meals,
starting in December 2016. See [15] for details.



both at labeling the foods and estimating total calories. We
then extend their method from 3 restaurants to 23 restau-
rants, increasing the coverage from 41 food items to 2517.
We show that the same basic multilabel classification sys-
tem continues to work.

Unfortunately, it is hard to get enough images for all the
menu items for all the restaurants in the world. And even if
we could, this would not help us when the user is not eating
at a restaurant. Therefore, in Section 4, we develop a set
of 201 generic, restaurant-independent food tags. We then
extend the existing public Food101 dataset [3] with these
tags using crowdsourcing. We call the resulting dataset
Food201-multilabel and plan to release it publicly.3 We
show that the same kind of CNN-based multi-label clas-
sifier also works fairly well on this new (larger and more
challenging) dataset, although we found it necessary to per-
form some clustering of visually indistinguishable labels in
order to get acceptable performance.

Of course, detecting the presence of a food item in an
image is not sufficient, since most items can be “parameter-
ized” in terms of size, toppings, etc. Note that this is true
even in the restaurant setting. We could of course ask the
user about these variants, but we would like to do as much
as possible automatically.

To be able to perform such fine grained classification,
we need to be able to localize the objects within the image
and extract detailed features. We argue that a segmentation-
based approach is more appropriate than the traditional
bounding-box approach, since food items can have highly
variable shape. In Section 5, we present the new Food201-
segmented dataset, and our approach to semantic image seg-
mentation. We show that leveraging the multilabel classifier
from the earlier stage can help with segmentation, since it
provides a form of “context”.

Once we have segmented the foods, we can try to esti-
mate their volume. To do this, we need to know the sur-
face height of the foods above the plate. In Section 6, we
present some preliminary results on estimating the depth of
each pixel from a single RGB image, using a CNN. We then
show promising results on estimating the volumes of foods.

In summary, this paper makes 3 main contributions.
First, we develop a system that can recognize the contents
of a restaurant meal much more accurately than the previ-
ous state of the art, and at a much larger scale. Second, we
introduce a new dataset, Food201, and show how it can be
used to train and test image tagging and segmentation sys-
tems. Third, we show some promising preliminary results
on the challenging problem of mapping image to calories
from images taken in the wild, in a non-restaurant setting.
Our overall system is illustrated in Figure 1.

3 See https://storage.googleapis.com/food201/
food201.zip.

Figure 1. Illustration of the overall system. Dotted boxes denote
components that have not yet been implemented. The input is one
or more images, and optionally a GPS signal and user priors (e.g.,
concerning food preferences). The output is a food diary, and an
estimated total calorie count (in cases where a suitable nutritional
database is available, such as from a restaurant’s menu).

Name #Classes #Train #Test Comments
Food101 101 75,750 25,250 [3]
Food101-Background 2 151,500 50,500 Food vs non-food
Food201-MultiLabel 201 35,242 15,132 Multi label
Food201-Segmented 201 10,100 2,525 Label per pixel
Restaurant 2517 75k 25k Single label
Gfood-3d - 150k 2471 Depth per pixel
Nfood-3d - - 1050 Depth per pixel

Table 1. Summary of the datasets used in this paper. The Restau-
rant dataset contains web images for 23 restaurants. Gfood-3d is
from 50 Google meals. Nfood-3d is from 11 meals made with
Nasco food replicas.

2. Meal detection
The first step in our pipeline is to determine if the im-

age is an image of a meal at a “reasonable” distance from
the camera. We can phrase this as a simple binary classifi-
cation problem. To tackle this problem, we need to have a
suitable dataset. We start by taking the Food101 dataset de-
veloped in [3], which contains 101 classes of food, 1000 im-
ages each (750 train, 250 test). Food101 is the largest pub-
licly available dataset of food images we are aware of (see
Table 1 for a comparison with some other public datasets).

The Food101 dataset is designed for multi-class classifi-
cation. To make a dataset suitable for binary classification,
we combined all the food classes into one generic “food”
class, and then randomly extracted an equal number of im-
ages from the ImageNet challenge dataset [30] to create the
“non-food” class.4

Each image is rescaled (if necessary) so that its maxi-
mum height or width is 512 pixels, but preserving the orig-
inal aspect ratio. We call this new dataset the Food101-

4 ImageNet actually contains 51 food classes, so we removed these
images from the negative set.

https://storage.googleapis.com/food201/food201.zip
https://storage.googleapis.com/food201/food201.zip


Background dataset.
To train a classifier for this problem, we took the

GoogLeNet CNN model from [34], which had been pre-
trained on ImageNet, removed the final 1000-way softmax,
and replaced it with a single logistic node. Then we fine
tune the whole model on the Food101-Background dataset;
this takes about 12 hours using a single Titan X GPU with
12 GB of memory. The final test set accuracy is 99.02%.

3. Restaurant-specific im2calories

Once we have determined that the image contains a meal,
we try to analyze its contents. The first step is to deter-
mine which restaurant the user is in. In this paper, we use
Google’s Places API [27] for this. We then retrieve the
menu of the nearest restaurant from the web,5 parse the
menu into a list of K food items, and retrieve images for
each of these, either by performing web search (as in [2]) or
by asking users to collect images (as in [1]).6

Once we have the dataset, we can train a classifier to map
from image to label. Since the user may have multiple food
items on their plate, it is better to use a multi-label classi-
fier rather than using a multi-class classifier, which assumes
the labels are mutually exclusive. Next we can estimate the
set of foods that are present by picking a suitable thresh-
old φ, and then computing S = {k : p(yk = 1|x) > φ},
where p(yk = 1|x) is the probability that food k is present
in image x. Finally, we can lookup each of these food
items in our (restaurant specific) database, and then esti-
mate the total calories as follows: Ĉ =

∑
k∈S Ck, where

Ck is the calorie content of menu item k. Alternatively, to
avoid having to specify the threshold φ, we can compute
C̄ =

∑K
k=1 p(yk = 1|x)Ck. We compare these methods

below.

3.1. Experiments on MenuMatch dataset

To evaluate this approach, we used the dataset from [1],
known as “MenuMatch”. This consists of 646 images,
tagged with 41 food items, taken from 3 restaurants. Un-
like other datasets, each image in MenuMatch has a cor-
responding ground truth calorie estimate, computed by an
expert nutritionist. In addition, each restaurant’s menu has
corresponding ground truth calorie content per item.

[1] used various hand-crafted features together with a
linear SVM, trained in a one-vs-all fashion. Their best per-
forming system achieved a mean average precision (mAP)

5 This data is available for many US chain restaurants in semi-
structured form from https://www.nutritionix.com.

6 In practice, it is suprisingly complicated to parse the menus and re-
trieve relevant images. For example, the restaurant “16 handles” contains
the folowing items: NSA Blueberry Tease, NSA Chocolate Eruption, NSA
Strawberry Fields, and 65 other similar entries. You need to know that
these are from the frozen yogurt section of the menu, and that NSA stands
for “no sugar added”, in order to make any sense of this data.

Method Mean error Mean absolute error
Baseline −37.3± 3.9 239.9± 1.4
Meal Snap −268.5± 13.3 330.9± 11.0
Menu Match −21.0± 11.6 232.0± 7.2

Ĉ −31.90± 28.10 163.43± 16.32
C̄ −25.35± 26.37 152.95± 15.61

Table 2. Errors in calorie estimation on the MenuMatch dataset.
Ĉ and C̄ are our methods. Numbers after the ± sign are standard
errors estimated by 5-fold cross-validation. See text for details.

of 51.2% on the test set. By contrast, we get much better re-
sults using a deep learning approach, as we explain below.

We took the GoogLeNet CNN model from [34], which
had been pre-trained on ImageNet, removed the final 1000-
way softmax, replaced it with a 101-way softmax, and fine-
tuned the model on the Food101 dataset [3]. The resulting
model has a classification accuracy on the Food101 test set
of 79%, which is significantly better than the 50.76% re-
ported by [3] (they used hand crafted features plus an SVM
classifer using a spatial pyramid matching kernel).

Next, we took the model which was trained on Food101,
removed the 101-way softmax, replaced it with 41 logistic
nodes, and fine-tuned on the MenuMatch training set. (Pre-
training on Food101 was necessary since the MenuMatch
dataset is so small.) The resulting mAP on the test set is
81.4%, which is significantly higher than the best result of
51.2% reported in [1].

Finally, we wanted to assess the accuracy of calorie pre-
diction. We compared 5 methods: the MenuMatch system
of [1], the MealSnap app [25] that uses crowdsourcing, our
method using Ĉ, our method using C̄, and finally, a baseline
method, which simply computes the empirical mean of the
calorie content of all meals from a specific restaurant. The
results are shown in Table 2. We see that our system has
considerably lower error than MenuMatch and the crowd-
sourced MealSnap app. (The unreliability of MealSnap was
also noted in [26].) In fact, we see that MenuMatch barely
beats the baseline approach of predicting the prior mean.

3.2. Scaling up to more restaurants

The MenuMatch results are based on 646 images of 41
food items from 3 restaurants. In this Section, we discuss
our attempts to scale up these experiments.

First, we downloaded the menus for the top 25 restau-
rants in the USA, as ranked by sales.7 We decided to
drop “Pizza Hut” and “Chipotle”, since gathering images
for their menu items was tricky.8 From the remaining 23

7 Source: http://nrn.com/us-top-100/
top-100-chains-us-sales.

8 For example, “Pizza Hut” has menu items such as “chicken”, “pep-
peroni”, etc. But these are toppings for a pizza, not individual food items.
Similarly, “Chipotle” lists “chicken”, “beans”, etc. But these are fillings
for a burrito, not individual food items.

https://www.nutritionix.com
http://nrn.com/us-top-100/top-100-chains-us-sales
http://nrn.com/us-top-100/top-100-chains-us-sales


Figure 2. Top 1 and top 5 error rates on the test set for 23 different
restaurants, before and after clustering the most confusable labels.

restaurants, we collected 4857 menu items. We manually
removed drinks and other miscellaneous items, and then
scraped 1.2 million images by issuing image search queries
of the form “<restaurant name> <item name> (yelp |
flickr | instagram | pinterest | foodspotting)”. (These site
restricts were chosen to increase the chances that we col-
lected user-generated photos, rather than “official” photos
from the restaurant itself, which tend to be too easy.) Of
the scraped images, 270k were sent to Amazon Mechani-
cal Turk for verification, producing a final set of 2517 menu
items and 99k images. We call this the Restaurant dataset.

We then took our GoogleLeNet model, which had been
trained on ImagetNet and then Food101, and replaced the
101-softmax with 2517 logistic nodes. We trained the final
layer of this model on 75% of the data, and tested on the
rest. We then computed the top 1 and top 5 error rates,
averaged over the food items, for each of the 23 restaurants.
The results are shown in Figure 2.

The top 1 error rate is quite high. This is because many
food items are extremely similar, and it is hard, even for
a human expert, to tell them apart. For example, McDon-
alds has the following items on its menu: Quarter Pounder
Deluxe, Quarter Pounder Bacon Cheese, Quarter Pounder
with Cheese, etc. (See Figure 3 for an illustration of these
food items.)

To combat this issue, we computed the class confusion
matrix on the training set for each restaurant, and then per-
formed a very simple clustering of similar items. In partic-
ular, we computed the K nearest neighbor graph, in which
we connected each label to the K other labels it is most of-
ten mapped to (which can include itself). We then computed
the connected components to form a set of clusters.

Figure 3. The first two images are put into the same vi-
sual cluster, the third is kept distinct. Image sources:
http://www.mcdonaldsmenu.mobi/beefburgersmenu/deluxequarterpounder/.

http://www.mcdonaldsmenu.mobi/beefburgersmenu/baconcheesequarterpounder/.

http://www.mcdonalds.com/us/en/food/product_nutrition.burgerssandwiches.7.

quarter-pounder-with-cheese.html

We found qualitatively that using K = 1 gave a good
tradeoff between merging the most confusable classes and
overclustering. With K = 1, the number of clusters was
about 0.9 times the original number of items; most clusters
were singletons, but some had 2 or 3 items in them. Fig-
ure 3 gives an example of two clusters we created from the
McDonald’s menu; the first cluster contains two very vi-
sually similar items (Quarter Pounder Deluxe and Quarter
Pounder Bacon Cheese), and the second cluster contains a
visually distinctive item (Quarter Pounder with Cheese).

Finally, we evaluated performance of the classifier on the
clustered test labels, by defining the probability of a cluster
as the max probability of any label in the cluster. Figure 2
shows that, not surprisingly, the error rates decrease. In the
future, we hope to try using a hierarchical classifier, which
can tradeoff specificity with error rate c.f., [11].

4. Generic food detection

The results from Section 3 required images for each
menu item from each restaurant. It is difficult to acquire
such data, as previously remarked. To create a more generic
dataset, we took half of the Food101 dataset (50k images),
and asked raters on Mechanical Turk to name all the food
items they could see in each image. We included the origi-
nal class label as one of the choices, and manually created
a list of commonly co-occuring foods as additional choices
in the drop-down menu (e.g., eggs often co-occur with ba-
con). We also allowed raters to enter new terms in a text
box. We used 2 raters per image. After manually merging
synonymous terms, and removing terms that occurred less
than 100 times, we ended up with a vocabulary of 201 la-
bels. On average, each image had 1.9 labels (with a median
of 1 and a max of 8).

We split the resulting dataset into 35,242 training im-
ages and 15,132 test images, in a way which is consistent
with the Food101 train/ test split. We call this the Food201-
MultiLabel dataset. See Table 1 for a summary of how this
dataset compares to other public food datasets.

Next, we developed a multi-label classifier for this

http://www.mcdonaldsmenu.mobi/beefburgersmenu/deluxequarterpounder/
http://www.mcdonaldsmenu.mobi/beefburgersmenu/baconcheesequarterpounder/
http://www.mcdonalds.com/us/en/food/ product_nutrition.burgerssandwiches.7.quarter-pounder-with-cheese.html
http://www.mcdonalds.com/us/en/food/ product_nutrition.burgerssandwiches.7.quarter-pounder-with-cheese.html


Figure 4. Precision-recall curves for 6 classes, ranging from best
to worst, on the Food201-MultLabel dataset.

dataset, using the same method as in Section 3 (namely tak-
ing the GoogLeNet model, replacing the 101-way softmax
with 201 logistic nodes). This takes about half a day to train
on a single GPU. We then compute the average precision
(area under the precision-recall curve) for each class, and
average this over the classes, to compute the mean average
precision (mAP).

The mAP is 0.8 for classes in Food 101, 0.2 for classes
outside Food 101, and 0.5 overall. Not surprisingly, we do
better on the original Food101 classes, since the new classes
often correspond to side dishes or smaller food items, and
are much less frequent in the training data. The top 3
classes were: edamame (0.987), macarons (0.976), hot and
sour soup (0.956). The bottom 3 classes were: cream
(0.015), garnish (0.014), peppers (0.010). Figure 4 shows
the precision-recall curves for some of these classes.

5. Semantic image segmentation
In addition to predicting the presence of certain foods, it

is useful to localize them in the image. Since most foods
are amorphous, it is better to segment out the region corre-
sponding to each food, rather than putting a bounding box
around them. Such a segmented image will enable further
analysis, such as counting and size estimation (see below),
which is essential for nutrition estimation. We can also al-
low the user to interactively edit the estimated segmentation
mask, in order to improve accuracy of the system (although
we leave this to future work).

To train and evaluate semantic image segmentation sys-
tems, we took a subset of the Food201-MultiLabel dataset
(12k images), and asked raters on a crowd computing plat-
form to manually segment each of the food items that have
been tagged (in an earlier stage) in that each image. We used
1 rater per image, and an internal tool that leverages grab-

cut to make this labeling process reasonably fast. Raters
had the option of skipping foods that were too hard to seg-
ment. Thus some foods are not segmented, resulting in false
negatives. We call this the Food201-segmented dataset.

Note that we are segmenting each class, as in the PAS-
CAL VOC semantic segmentation challenge [13]. Ar-
guably, instance-level segmentation (see e.g., [17]) would
be more useful, since it distinguishes different instances of
the same class, which would enable us to count instances.9.
However, this is quite difficult. For example, consider dis-
tinguishing pancake 1 from pancake 2 in the food image in
Figure 1: this is quite challenging, since the top pancake
almost completely covers the bottom one. Furthemore, seg-
menting the eggs into 2 instances is even harder, since the
boundary is not well defined. We leave instance-level seg-
mentation to future work.

To tackle the segmentation problem, we use the
“DeepLab” system from [6].10 This model uses a CNN to
provide the unary potentials of a CRF, and a fully connected
graph to perform edge-sensitive label smoothing (as in bi-
lateral filtering).

The model is initialized on ImageNet, and then fine-
tuned on Food201-segmented, which takes about 1 day on
a single GPU. For the 3 CRF parameters, which control the
strength of the edge potentials, we use the parameter val-
ues from [6]; these were chosen by grid search, to minimize
validation error on held-out training data.

The label set in the Food201-Segmented dataset is much
larger than in the VOC challenge (201 labels instead of just
20). Consequently, the baseline model has a tendency to
generate a lot of false positives. To improve performance,
we take the probability vector p(yk = 1|x) computed by the
multi-label classifier from Section 4, find the top 5 entries,
and then create a binary mask vector, which is all 0s except
for the top 5 labels, plus the background. We then multiply
the per-pixel label distribution from the segmentation CNN
by this sparse vector, before running the CRF smoothing.
This provides a form of global image context and improves
the results considerably (see below).

We show some sample results in Figure 5. Consider the
last row, for example. We see that the context from the mul-
tilabel model helps by eliminating false positives (e.g., cap-
rese salad and caesar salad). We also see that the ground
truth is sometimes incomplete (e.g., the burrito is not actu-

9 It is more natural for the user if the system records in their food diary
that they ate 3 slices of pizza rather than, say, 120 ounces of pizza. It is
also much easier for the user to interactively fix errors related to discrete
counts than continuous volumes. Of course, this assumes we know what
the size of each slice is. We leave further investigation to future work.

10 At the time this paper was submitted, DeepLab was the
best performing method on the PASCAL VOC challenge (see
http://host.robots.ox.ac.uk:8080/leaderboard/
displaylb.php?challengeid=11&compid=6). At the time
of writing the camera ready version, the best performing method is an
extension of DeepLab that was additionally trained on MS-COCO data.

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6


Figure 5. Examples of semantic image segmentation on some im-
ages from the Food201-Segmented test set. First column: original
image. Second column: ground truth. Third column: predictions
using CNN/CRF. Fouth column: predictions using CNN/CRF with
multilabel context. Best viewed in color.

CRF? Context? Acc Recall IoU
0 0 0.71 0.30 0.19
1 0 0.74 0.32 0.22
0 1 0.74 0.32 0.23
1 1 0.76 0.33 0.25

Table 3. Performance on the Food101-Segmented test set.

ally labeled by the human). Finally, we see that the label
space is somewhat arbitrary: the ground truth uses the term
“salad”, whereas the model predicts “lettuce”. Currently we
ignore any semantic similarities between the labels.

The performance of our system with and without the
CRF, and with and without multilabel context, is shown in
Table 3. The performance in terms of IoU is much lower
than on the PASCAL VOC 2012 segmentation challenge.
We believe this is due to several factors: (1) we have 201
foreground labels to predict, whereas VOC just has 20;
(2) our labeled dataset suffers from incompleteness, which
can result in correct predictions being erroneously being
counted as false positives, as well as “polluting” the back-
ground class during training; (3) our task is arguably intrin-
sically harder, since the categories we wish to segment are
more deformable and varied in their appearance than most
of the VOC categories.

6. Volume estimation
Having segmented the foods, the next step is to estimate

their physical size (3d volume).
We first predict the distance of every pixel from the cam-

era, using the same CNN architecture as in [12] applied to
a single RGB image. We trained our model on the NYU
v2 RGBD dataset of indoor scenes, and then fine tuned it
on a new 3d food dataset we collected which we call the
GFood3d dataset (G for Google). This consists of short
RGBD videos of 50 different meals from various Google
cafes collected using the Intel RealSense F200 depth sen-
sor.11 In total, the dataset has about 150k frames. (Note
that each RGB image has a corresponding depth image, but
otherwise this is unlabeled data.)

On a test set of 2,471 images (recorded in a different set
of Google cafes), we get an average relative error of 0.18
meters, which is slightly better to the performance reported
in [12] on the NYU dataset. Figure 6 shows a qualitative
example. We see that the CNN is able to predict the depth
map fairly well, albeit at a low spatial resolution of 75 x
55. (For comparison with the F200 data, we upsample the
predicted depth map).

The next step is to convert the depthmap into a voxel
representation. To do this, we first detect the table surface
using RANSAC. Next, we project each pixel into 3d space,
exploiting the known intrinsic parameters of the F200 sen-
sor. Finally, we tile the table surface with a 2d grid (using a
cell size of 2mm x 2mm), and compute the average height
of all the points in each cell, thus creating a “tower” of that
height. For an example of the result of this process, see
Figure 7.

Given a voxel representation of the food, and a segmen-
tation mask, we can estimate the volume of each food item.
To measure the accuracy of this approach, we purchased the
“MyPlate” kit from Nasco.12 This contains rubber replicas
of 42 food items in standard sizes, and is used for training
nutritionists. We verified the actual size of these items using
the water displacement method (we found that the measured
size was somewhat smaller than the quoted sizes). We then
created 11 “meals” from these food replicas, and recorded
images of them using the F200. Specifically, we put the
meals on a turntable, and automatically took 100 images as
the plate went through a full rotation. The resulting dataset
has 1050 depth images. We call this the NFood-3d dataset
(N for Nasco).

To measure performance of our system, we compute the
absolute error in the volume estimate. We can estimate the
volume using the true depth map (from F200) or the pre-

11 The F200 has a spatial resolution of 1920 x 1080 pixels, and a sensing
range of 0.2–1.2m. The Kinect2 camera has the same resolution, but a
sensing range of 0.8–3.5m. Thus the F200 is a better choice for close up
images.

12 Source: http://www.enasco.com/product/WA29169HR.

http://www.enasco.com/product/WA29169HR


Figure 6. (a) An image from the GFood-3d test set. (b) Depth recorded from RealSense RGBD sensor. (c) Depth predicted by CNN.

Figure 7. (a) An image from the NFood-3d dataset. (b) Voxel grid derived from RealSense depthmap. (c) Voxel grid estimated from CNN
predicted depthmap. Size of grid cell is 2mm x 2mm.

Figure 8. Absolute error in volume estimation (in ml) across the
11 meals in the NFood-3d dataset. Each meal has 100 images,
taken from different viewing angles. The boxplots plot the distri-
bution of errors across these 100 images.

dicted depth map (from CNN), and using the true segmen-
tation mask (from human) or the predicted segmentation
mask (from CNN). Unfortunately, we have found that our
segmentation system does not work well on the NFood im-
ages, because their color and texture properties are too dis-
similar to real food. However, we were able to compare
the quality of using the true depth map and predicted depth
map. The results are shown in Figure 8. We see that for
most of the meals, our CNN volume predictor is quite accu-
rate.

7. Calorie estimation
The final step is to map from the volume to the calorie

content. This requires knowing the calorific density of each
kind of food. The standard source for this is the USDA Na-
tional Nutrient Database (NNDB). The latest version (May
2015) is Standard Release 27 [35], which lists nutritional
facts about 8618 basic foods. However, we have noted a
discrepancy of up to 35% in the calorie contents between
the USDA NNDB and the numbers quoted by Nasco for
their food replicas.13

A more serious problem is that the NNDB focuses on
“raw” foods, rather than cooked meals. For example,
NNDB contains information such as the calorie content of a
pound of beef, but this does not help us estimate the calorie
content of a cooked burger. For prepared foods, it is better
to use the USDA Food and Nutrient Database for Dietary
Studies (FNDDS) [16], which is derived from NNDB.14

However, the calorie content can vary a lot depending on
exactly how the food was prepared (e.g., grilling vs frying).
Consequently, we do not yet have a broad coverage nutri-
tional database for prepared foods, and therefore we have
not yet been able to conduct an end-to-end test of our sys-
tem outside of the restaurant setting.15

13 According to http://www.enasco.com/product/
WA29109HR, “nutrition data is provided by The Nutrition Company
using their FoodWorks nutrient analysis software”. Recall that these food
replicas are used to train professional nutritionists, so the information
cards that accompany them are designed to be as accurate as possible.

14 For a detailed comparison of NDB-SR and FNDDS, see
http://www.nutrientdataconf.org/PastConf/NDBC36/
W-3_Montville_NNDC2012.pdf.

15 Companies such as MyFitnessPal have developed much larger nutri-

http://www.enasco.com/product/WA29109HR
http://www.enasco.com/product/WA29109HR
http://www.nutrientdataconf.org/ PastConf/NDBC36/ W-3_Montville_NNDC2012.pdf
http://www.nutrientdataconf.org/ PastConf/NDBC36/ W-3_Montville_NNDC2012.pdf


Figure 9. Screenshot of the mobile app. Note that it is running in
airplane mode (no internet connection).

8. Mobile app
The complete system is sketched in Figure 1. We have

ported the restaurant detector, meal detector, and food de-
tectors (the multi-label classifiers) to the Android mobile
phone system. The app can classify any image in under
1 second. The memory footprint for the model is less
than 40MB (using unquantized floats to represent the CNN
weights). However, we have not yet ported the segmenta-
tion or depth estimation CNNs.

To use the app, the user takes a photo and then our sys-
tem processes it. First the system determines if the image
contains a meal, and if you are at a known restaurant. If
so, it applies the multilabel classifiers. We sort the possible
labels by their predicted probability, taking all those above
a threshold of 0.5, and then truncating to the top 5, if neces-
sary. We then show these labels to the user (see Figure 9 for
a screenshot). The user can dismiss any labels that are incor-
rect. He/ she can also enter new labels, either by selecting
from a pull-down menu (sorted in order of probability), or
by entering free text. The user’s image and labels are then
optionally stored in the cloud for subsequent offline model
retraining (although we have not yet implemented this).

9. Related work
There is a large number of related prior publications.

Here we mention a few of them.
In terms of public datasets, we have already mentioned

Food101 [3], which has 101 classes and 101k images. In
addition, there are various smaller datasets, such as: PFID
[7], which has 61 classes (of fast food) and 1098 images;
UNICT-FD889 [14], which has 889 classes and 3853 im-
ages; and UECFOOD-100 [24], which has 100 classes (of
Japanese food), and 9060 images.

tional databases using crowd sourcing [22], but this data is proprietary, and
its quality is not guaranteed (since most casual users will not know the true
nutritional content of their food).

In terms of classifiers, [3, 18] use SVMs for generic
foods. [2] and [1] develop restaurant-specific multi-label
classifiers. Some recent papers on food segmentation in-
clude [28, 33, 38, 37].

There are many papers that leverage structure from mo-
tion to develop a 3d model of the food, including [28, 21,
10, 36, 32]. However, all these methods require multiple
images and calibration markers. In terms of single images,
[4] use parametric shape models for a small set of food types
(e.g., sphere for an apple), and [19] use a nearest neigh-
bor regression method to map the 2d image area to physical
mass of each food item.

There are very few papers that predict calories from im-
ages. [33] apply semantic image segmentation, and then
train a support vector regression to map from the number of
pixels of each class to the overall number of calories in the
meal. [4, 19] calculate calories by multiplying the estimated
volume of each food by the calorie density. [26] use crowd-
sourcing to estimate calories. [1] relies on the restaurant’s
menu having the calorie information.

10. Discussion

Besides its obvious practical use, the Im2Calories prob-
lem is also very interesting from the point of view of com-
puter vision research. In particular, it requires solving var-
ious problems, such as: fine-grained recognition (to dis-
tinguish subtly different forms of food); hierarchical label
spaces (to handle related labels); open-world recognition
(to handle an unbounded number of class names); visual at-
tribute recognition (to distinguish fried vs baked, or with or
without mayo); instance segmentation; instance counting;
amodal completion of occluded shapes [20]; depth estima-
tion from a single image; information fusion from multiple
images in real time, on-device; etc. We have tackled some
of these problems, but it is clear that there is much more
work to do. Nevertheless, we believe that even a partial so-
lution to these problems could be of great value to people.
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