
A framework to address a two-dimensional
composition of concerns1

Constantinos A. Constantinides, Atef Bader, Tzilla Elrad

Concurrent Programming Research Center
Department of Computer Science
Illinois Institute of Technology

10 W. 31 St. Chicago IL 60616, U.S.A
+1 312 567.5150 (phone) +1 312 567.5067 (fax)

{conscon, elrad} @charlie.cns.iit.edu, bader@delta.csam.iit.edu
www.iit.edu/~concur

Abstract

Although not bound to Object-Oriented Programming (OOP), Aspect-Oriented Programming (AOP) is a para-
digm proposal that retains the advantages of OOP and aims at avoiding the tyranny of dominant decomposition.
The goal is to achieve an improved separation of concerns in both design, and implementation. Our work con-
centrates on the aspectual decomposition of concurrent object-oriented systems. We address composition of
concerns by the aspect moderator class that coordinates the interaction of components and aspects while pre-
serving the semantics of the overall system. Our design framework provides an adaptable model that allows for
an open language where new aspects (specifications) can be added and their semantics can be delivered to the
compiler through the moderator. In essence the aspect moderator framework is a program that extends the lan-
guage itself.

Keywords: Aspect-Oriented Programming, Concurrent Programming, Open Implementation.

1. Introduction

There are numerous benefits from having an important concern of a software system being expressed well lo-
calized in a single code section. We can more easily understand it, analyze it, modify it, extend it, debug it, reuse
it etc. The need for dealing with one important issue at a time was coined as the principle of separation of con-
cerns [Parnas72]. To date, the primary idea for organizing software systems has been based on software decom-
position, where a problem is broken down into sub-problems that can be addressed relatively independently.
Software decomposition and programming languages have been mutually supportive. Current languages and
paradigms support a number of modular representations such as procedures, and objects. They further support
composition of modules into whole systems. At the same time many systems have properties that do not neces-
sarily align with the functional components and cannot be localized to modular units. Example properties in-
clude performance optimizations, failure handling, synchronization, coordination and scheduling policies. As-
pects are defined as properties that cut across groups of functional components. While these aspects can be
thought about and analyzed relatively separately from the basic functionality, at the implementation level they
must be combined together. Programming them manually into the system’s functionality using current compo-
nent-oriented languages results in aspects being spread throughout the code. This code tangling makes the
source code difficult to develop, understand and evolve by destroying modularity and reducing software quality
[Lopes97, Kiczales et al. 97].

1 Submitted to the OOPSLA’99 First Workshop on Multi-Dimensional Separation of Concerns in Object-Oriented Systems.
Last revised: October 26, 1999.

2

The major goals of Object-Oriented Programming (OOP) are abstraction, modularity, and code reuse. On the
other hand, OOP provides only one dimension along which concerns can be separated. This was coined the “tyr-
anny of dominant decomposition” by [Ossher and Tarr 99]. Although not bound to OOP, Aspect-Oriented Pro-
gramming (AOP) is a paradigm proposal that retains the advantages of OOP and aims at avoiding the tyranny of
dominant decomposition. In [Mens et al. 97, Lorenz98] AOP is viewed as a general modeling mechanism,
which applies to all phases of the life cycle of the software. In fact, [Lunau97, Tekinerdogan and Aksit 98] en-
courage aspectual decomposition from the very beginning. Current AOP approaches view components and as-
pects as two separate entities where the aspects are automatically weaved into the functional behavior of the
system in order to produce the overall system. In [Mens et al. 97] it was argued that generalized procedure lan-
guages do not provide the right abstraction for the description of aspects. The importance of having appropriate
languages for the expression of aspects was also addressed and it was argued that aspect languages make aspect
code more concise and easier to understand. If aspects are expressed in domain-specific languages, one needs an
aspect language for every type of aspect and an automatic weaver tool would implement one (or more) aspect
languages. On the other hand [VanHilst97] views weaving as a more general process that corresponds to com-
ponent composition rather than merging. In [Ossher and Tarr 99] the authors argue that AOP does not go far
enough with respect to tackling the tyranny of dominant decomposition as AOP permits only one decomposi-
tion. Instead, the concept of multi-dimensional separation of concerns is proposed.

2. Statement of the problems

One difference in the proposals for supporting AOP resides in the way in which aspects are weaved across the
functional components of the system: One issue is whether the weaving is static or dynamic. Example architec-
tures that impose static weaving include D [Lopes97], AspectJ [Lopes and Kiczales 98], D2-AL [Becker98], and
IL [Berger et al. 98]. Other architectures that make use of reflective technologies allow dynamic weaving. Ex-
amples include Luthier-MOP [Pryor and Bastán 99] and AOP/ST [Böllert99]. Another issue is whether there is
code transformation. Technologies that rely on automatic weavers produce code transformation. Examples in-
clude D, AspectJ, D2-AL and IL. Reflective technologies will typically not have code transformation. Addition-
ally there are proposals of specific languages for the support and implementation of AOP versus extensions to
general-purpose languages. Examples of the former include COOL, RIDL [Lopes97], D2-AL, IL and TyRuBa
[DeVolder98]. Examples of the latter include AspectJ, Replication-Framework [Fabry98], JST [Seinturier99],
Luthier-MOP and Kava [Welch and Stroud 99]. Further, there are differences in the level of abstraction of these
implementations. We summarize a comparison of AOP technologies in tables 1 and 2. Our position is that
automatic weaver implementations and aspect languages impose a number of restrictions which we discuss in
this section.

2.1 Increased complexity of a general-purpose aspect language. Where a general-purpose aspect language is im-
plemented, the introduction of new types of aspects will require the language to be extended in order to provide
new constructs for their representations. As the number of these aspects increases, the complexity of (both im-
plementation and use of) the language would also increase.

2.2 Expressiveness of general-purpose aspect language. Can a general-purpose aspect language really be general
purpose? We yet have to see real examples of expressing different kinds of aspects. On the other hand, the lan-
guage designers must have a grammar specification in advance. As it is impossible to predict the syntax of pos-
sible future aspects we argue that an aspect language can really be general purpose if it is constantly expanded.

2.3 Restrictions in specific aspect language implementations. [Beugnard99] argues that AspectJ imposes a re-
striction by enforcing the explicit reference to the code in the aspect, making it reusable only for that purpose.
The author proposes a separation of the aspect description in two parts: the semantics of the aspect itself, and the
join points.

3

2.4 Restrictions imposed by static weaving, and lack of support of dynamic weaving. In a number of current im-
plementations, the weaving process is static. Aspects reference the classes of those objects whose behavioral
additions describe, and define the points at which additions should be made. Static weaving means to modify the
source code of a class by inserting aspect-specific statements at join points. In other words, aspect code is in-
lined into classes. The result is a highly optimized woven code whose execution speed is comparable to that of
code written without AOP. However, static weaving makes it difficult to later identify aspect-specific statements
in woven code. As a consequence, adapting or replacing aspects during run-time can be time consuming or not
possible at all. An example where dynamic weaving would be beneficial is given by [Matthijs et al. 97] where a
load balancing aspect could replace the load distribution strategy woven before with a better one depending on
the current load of managed servers. Another example is given by [Böllert98b] where a particular malfunction in
a software system should deploy a tracing aspect to be woven and run without having to restart the software
system. Currently, automatic weaving is not a viable technology for implementing aspects in a dynamic envi-
ronment. Static weaving has advantages over performance [Böllert99] whereas dynamic weaving facilitates in-
cremental weaving and makes debugging easier. Ideally, an implementation should support both static and dy-
namic weaving. A feasible approach to handle dynamic weaving is to implement aspects using meta-objects.
Proposals that address dynamic weaving through the use of meta-programming are [Lunau98], AOP/ST and
Luthier-MOP.

ARCHITECTURE /
FRAMEWORK

DESCRIPTION LANGUAGE(S)
ADL: ASPECT DEFINITION
LANGUAGE
CL: COMPONENT LANGUAGE

IMPLEMENTATION

D Synchronization / Coordina-
tion architecture

COOL(synchronization ADL)
RIDL (coordination ADL)

Automatic weaving

AspectJ General purpose aspect lan-
guage

Java extension (ADL)
Java (CL)

Automatic weaving

D2-AL Aspect language for distri-
bution control

D2-AL (ADL)
Java(CL)

Automatic weaving

IL Aspect language for object
interaction

IL (ADL)
Smalltalk, Open-C++ (CL)

Automatic weaving

Replication Frame-
work

Aspect language for replica-
tion.
Aspect language for error
handling

Java extension (ADL) Automatic weaving

Extended Computa-
tional Reflective
Architecture

Metaobject architecture Reflection

TyRuBa Simplified Prolog COOL subset (ADL) Automatic weaving
JST Aspect language for syn-

chronization
JST – Java extension (ADL)
Java (CL)

Reflection: Weaver
produces OpenJava
meta-class

Luthier-MOP Metaobject architecture Extension to Smalltalk Reflection
AOP/ST Metaobject architecture Smalltalk Reflection
Kava Metaobject architecture Extension to Java Reflection

Table 1. Description of AOP architectures and frameworks.

2.5 Increased complexity of an automatic weaver. The weaver confines itself to the nature of the aspects and the
constructs provided by the aspect language(s) it implements. The weaver must contain a specific interpreter for
each aspect description language. If a new type of aspect of concern were to be added to the model, the weaver
would have to be modified (extended) to adapt to the new model. As different aspect description languages ad-
dress different types of aspects, an increase in the number of aspect languages would result in an increase in the
complexity of the weaver.

4

2.6 Aspect inter-relationships. An open problem remains the issue of aspect-aspect interaction. We can break
this down into two areas: 1) relationship of orthogonal aspects and 2) the existence of non-orthogonal aspects.
The relationship of orthogonal aspects relies on their order of activation and by their validation and verification.
Current aspect-oriented architectures have addressed models where aspects are orthogonal and therefore present
a flat structure. There are cases where aspects are not orthogonal, but they can cut across each other. In these
cases the overall structure is not flat but rather hierarchical. The issue of non-orthogonal aspects still remains an
open problem, which we believe can be attacked in either of two ways: 1) by language design and 2) by imple-
mentation.

2.7 Debugging and level of weaving. In several implementations that use automatic weavers, weaving is done
before compile time. Of great interest is the issue of debugging an aspect program. In proposals such as AspectJ,
the only way of thinking about and therefore debugging a program is to examine the woven code. We argue that
this should not be the case. Today a programmer debugs at the level of Java [Gosling et al. 96], and C++
[Stroustrup86] and not assembly code. The implementor should not be constrained by the requirement that there
exists woven code that is readable by the programmer.

ARCHITECTURE/
FRAMEWORK

SOURCE CODE
TRANSFORMATION

WEAVING LEVEL OF
WEAVING

REFERENCE

D YES Static Pre-compile [Lopes97]
AspectJ YES Static Pre-compile [Lopes and Kiczales 98]

D2-AL YES Static Pre-compile [Becker98]
IL YES Static Pre-compile [Berger et al.98]
Replication Framework YES Static Pre-compile [Fabry98]
Extended Computational
Reflective Architecture

NO Dynamic Run-time [Lunau98]

TyRuBa YES Static Pre-compile [DeVolder98]
JST YES Static Pre-compile [Seinturier99]
Luthier-MOP NO Dynamic Run-time [Pryor and Bastán 99]
AOP/ST NO Dynamic Development-

time
Run-time

[Böllert99]

Kava NO Dynamic Pre-compile [Welch and Stroud 99]

Table 2. A comparison of AOP implementations.

2.8 Lack of criteria of aspect ordering. How does an automatic weaver cope with multiple aspects that must be
woven into the same class, or the same method? Does the ordering have to be done manually, or should the
weaver sort aspects according to some criteria?

3. The proposed aspect moderator framework

Our work concentrates in concurrent object-oriented programming. In its simplest form, we view a concurrent
(shared) object as being decomposed into a set of abstractions that form a cluster of cooperating objects: a func-
tional behavior, synchronization, and scheduling. The behavior of a concurrent object can be reused, or ex-
tended. We view synchronization and scheduling as aspects, and we focus on the relationships between these
abstractions within the cluster. We can shift the responsibility of an automatic weaver to an object, the aspect
moderator, that would coordinate aspects and components together (figure 1). A proxy object controls access to
the functionality class. The proxy object uses the factory pattern to create aspects, and it uses the moderator ob-
ject to evaluate the aspects for every method of the functionality class (figure 2). Before invocation, the proxy
calls the moderator to evaluate its associated aspect(s). The aspect moderator class is extensible in order to make
the overall system adaptable to addition of new aspects. We also believe that this approach provides the flexibil-

5

ity to the programmer to retain the definition of aspects by current programming languages. It also provides the
basis for a design framework that would make use of patterns whose importance within the AO technology was
addressed in [Lorenz98]. The aspect moderator class defines the semantic interaction between the components
and the aspects. Further, the semantics of the model define the order of activation of the aspects.

4. Architecture of the framework

A sequential object is comprised of functionality control and shared data. Access to this shared data is controlled
by synchronization and scheduling abstractions. Synchronization controls enable or disable method invocations
for selection. The synchronization abstraction is composed of guards and post-actions. During the Precondition
phase, guards will validate the synchronization conditions. In the Notification phase, post-actions will update the
synchronization variables. The scheduling abstraction allows the specification of scheduling restrictions and
terminate-actions. At the Precondition phase, scheduling restrictions use scheduling counters to form the sched-
uling condition for each method. At the Notification phase, terminate actions update the scheduling counters.
During the Precondition phase, the synchronization constraints of the invoked method are evaluated. If the cur-
rent synchronization condition evaluates to RESUME the scheduling constraints are then evaluated. After exe-
cuting the Precondition phase, the moderator will activate the method in the sequential object. During Notifica-
tion, synchronization variables and scheduling counters are updated upon method completion. We stress the fact
that the activation order of the aspects is the most important part in order to verify the semantics of the system.
Synchronization has to be verified before scheduling. A possible reverse in the order of activation may violate
the semantics. There are other issues that might also be involved. If authentication is introduced to a shared ob-
ject for example, it must be handled before synchronization.

FUNCTIONAL BEHAVIOR

method b

method a

shared data

ASPECTUAL BEHAVIOR

Synchronization

Scheduling

Register aspects
Evaluate aspects

Proxy

Aspect
Moderator

Inherits

Create aspects

Aspect Factory

Uses

Uses

Figure 1. The aspect moderator framework as a cluster of cooperating objects.

4.1 The use of assertions to support software quality

A major component of quality in software is reliability: a system’s ability to perform its job according to the
specification (correctness) and to handle abnormal situations (robustness). [Meyer] introduces the concept of
“design by contract” in the context of the Eiffel programming language [Meyer92]. Under this theory, a soft-
ware system is viewed as a set of communicating components whose interaction is based on precisely defined
specifications of the mutual obligations known as contracts. These contracts govern the interaction of the ele-

6

ment with the rest of the world. The importance of assertions is also stressed in [Jézéquel and Meyer 97] where
it is described how the absence of specifications caused the disaster associated with the European Ariane 5
launcher. The aspect moderator framework adopts this approach in a different context: defining assertions (pre-
conditions and post-conditions) as a set of design principles. Meyer argues that assertion monitoring yields to a
productive approach to debugging, testing and quality assurance, in which the search for errors is not blind but
based on consistency conditions provided by the developers themselves. As a result, reliability should be a built-
in component in software development, not an afterthought. None of Java, Ada [DoD80] or CORBA [OMG98]
has any built-in support for design by contract. In [Jézéquel and Meyer 97] the authors argue that without speci-
fication it is probably safer to redo rather than to reuse. Another important issue is the one of the verification of
components and aspects in isolation from each other. One must be able to test the functionality of a component
as well as being able to test that an aspect will align nicely with the functional components. Otherwise, there can
be no guarantee that components and aspects will co-operate. In other words, one must test and verify the col-
laboration of components and aspects. This would constitute an important phase in the design process.

4.2 Adaptability

There is a general feeling that OOP promotes reuse and expandability by its very nature. We argue that this is a
misconception as none of these issues is enforced. Rather, a software system must be specifically designed for
reuse and expandability. In this framework both functional components and aspects are designed relatively sepa-
rately from each other. This separation of concerns allows for reusability. Adaptability is an important quality
factor in software systems. Incremental adaptability means coping with changing requirements without modify-
ing previously defined software components. The conventional object-oriented model supports adaptability
through composition, encapsulation, message passing and inheritance mechanisms. In general, lack of support of
dynamic adaptability might lead to re-engineering the whole software system. In [Sanchez et al. 98] it is argued
that concurrent OO languages do not provide enough support for the development of true adaptable software
either because aspects are mixed in the functional components, or because once components are woven the re-
sulting piece of software is too rigid to be adapted or reconfigured at run-time. The aspect moderator framework
makes use of design patterns that hook components and aspects together, defining their semantic interaction.
One of the advantages is that if a new aspect of concern would have to be added to the system, we do not need
to modify the moderator class. We can simply create a new class to inherit and re-define it, and reuse it for a
new behavior. The inherited class can handle all previous aspects, together with the newly added aspect. Adapt-
ability is also applied to components. The aspect-moderator framework does not require some new syntactic
structure for the representation of new aspects, but simply a new class for the new aspect. This technique makes
it easy for an existing aspect to be removed from the overall system. In this framework, the moderator object has
the capability to activate or drop aspects on the fly. Further, the semantic interaction between components and
aspects in the framework is defined by a set of principles. Part of this semantic interaction is the order of activa-
tion of the aspects thus providing a criterion for aspect ordering. The order of execution can also be altered on
the fly. This concept is not feasible with automatic weaver technologies. In this framework, components and
aspects are designed relatively separately and they remain separate entities that may access each other freely
without code transformation. In fact, functional components do not need to know about the aspect components
in advance (before run-time) but only after an aspect has been created and registered by the moderator class. As
a result, components and aspects discover each other at run-time if necessary. The interaction of newly added
aspects with the rest of the system is handled in a similar manner as the implementor must specify the contract
that binds a new aspect to the rest of the system rather than having to re-engineer the whole system. On the other
hand, automatic weavers must rely on language constructs that are hard coded into aspect code to provide the
contact (join) points. In [Matthijs et al. 97] the authors stressed the importance of aspect manifestation in every
stage of development. The issue that in some cases aspects should remain run-time entities was also discussed in
[Kenens et al. 98]. [Böllert98a] also stressed this issue by arguing that much like conditional compilation, as-
pects must be woven to the program on-demand. In technologies that rely on automatic weaving, aspects mani-
fest in the model and in the program code, but neither in object code (byte code in the case of Java) nor in ex-
ecutable (binary) code. [Böllert99] argues that with static weaving it might be impossible to adapting or replac-

7

ing aspects dynamically. The framework manages to achieve the manifestation of aspects at run-time. We argue
that is important that in order to achieve maximum flexibility a framework must provide for dynamic aspect
evolution and ideally support both static and dynamic behavior. As an example, an aspect such as scheduling or
load balancing might need to adapt itself based on run-time information. On the other hand an aspect such as
synchronization can be statically dealt with.

Functionality <<interface>>
AspectModeratorIF

Uses

FunctionalityProxy

PreActivation
PostActivation
RegisterAspect
RegisterComponent

Aspect

<<interface>>
AspectIF

<<interface>>
AspectFactoryIF

AspectFactory

Creates
Uses

Uses

AspectModerator
Uses

Requests-creation

creator

*

Precondition
Notification

Figure 2. The architecture of the aspect moderator framework.

4.3 Composition of aspects

In ESP [Dempsey and Cahill 97] and the Adaptive Arena [Bader and Elrad 98b] the functional part of a system
is separated from the synchronization code, but it still remains in the same class. The separation of functional
and aspectual code in the aspect moderator framework results in program code that is more modular. Further-
more, the framework follows a general-purpose approach in order to address composition of concerns. This way,
it is not confined to certain aspects but can address a number of aspects. It is also language neutral. With the ex-
ception of AspectJ, current technologies are confined in domain specific languages. We introduce the concept of
an aspect bank, where the moderator of a cluster may initially need to collect all the required aspects from. The
aspect bank provides a hierarchical two-dimensional composition of the system in terms of aspects and compo-
nents.

5. Comparisons with current technologies

The framework puts the system under one compilation phase where an executable code is produced. Intermin-
gled code exists only at the binary (executable) level. On the other hand, technologies such as AspectJ require
two phases of compilation, one for the weaver to produce an intermingled source code and another for the final

8

compilation into an executable code. The level of weaving defines the point up to which one manages to achieve
separation of concerns in the software system.

Both automatic weaver and the aspect moderator approaches provide the elegance of the original clean code
during the analysis and design of the system.

The very reason that guided research towards AOP has resulted in the avoidance of the problem of inheritance
anomaly. With the aspect moderator framework we manage to avoid the problem of inheritance anomaly since
components and aspects are pure objects and can be therefore re-used. This problem is solved in automatic
weaver technologies as well.

The concurrency facilities of the Java language provide a good choice to demonstrate the framework imple-
mentation but as AOP is not and should not be restricted to programming only (and thus not restricted to one
paradigm or a particular language) the framework manages to remain language neutral and work is under way to
identify other candidate languages. Particularly advantageous is the ability to express components and aspects in
the same language as large-scale software systems are built based on COTS technology rather than domain spe-
cific languages.

A comparison between this framework and AspectJ is essentially a demonstration of the tradeoffs between a
language and a framework. A language is ready to program but it is limited to the facilities that it provides. This
framework can be viewed as an open implementation since the moderator provides a mechanism to support an
open language. On one hand, a language implementor can always hard code a set of constructs to support a
number of pre-defined aspects. Perhaps it would be impossible to predict all possible aspects that might come up
and it would thus be impossible to predict their syntax and semantics. A language implementor would need to
have the syntax in advance. On the other hand the framework provides a general aspectual capability to the sys-
tem which is independent of a language. The aspect moderator is an architecture that allows for an open lan-
guage where new aspects (specifications) can be added and their semantics can be delivered to the compiler
through the moderator. In essence the moderator is a program that extends the language itself. Our approach has
a good chance to reduce possible inconsistencies, although it cannot guarantee correctness.

6. Conclusion

We believe that AOP should be considered a discipline for general programming and should not confine itself in
one application or a range of applications. It should not confine itself in a domain-specific language either. In
this position paper we presented some preliminary work on an aspect-oriented framework for concurrent object-
oriented systems. The overall behavior is made up of a functional behavior, concurrency aspects and a modera-
tor class that coordinates the interaction between components and aspects while observing the overall semantics.
Our approach partitions a system into a collection of cooperating classes in order to promote code reusability
and make it easier to validate the design and correctness of these systems. This framework can provide for an
adaptable model with ease of modification. The framework approach is promising, as it seems to be able to ad-
dress a large number of aspects (and applications) as long as the relationships of components and aspects (as
well as the aspect interrelationships) are cleanly defined. A clean definition of these inter-relationships is
achieved through the use of pre-conditions and post-conditions. In general we argue that a framework has a
longer life span than a language (one that is not constantly extended). Further, we believe that a large language
is generally undesired. A framework can therefore be viewed as providing a mechanism to address future needs
with the minimum cost (in regards to time, financial and complexity cost). Clearly opening a language can be
considered a risky approach, as the semantics of the extension mechanisms should balance openness with pro-
tection and security. In our framework the introduction of a new specification (aspect) must be accompanied by
a set of rules that will ensure the integrity of the semantics of the system. These rules are expressed as pre-
conditions, postconditions, and the order of activation of aspects.

9

7. References

[Aksit96] Mehmet Aksit. Composition and Separation of Concerns in the Object-Oriented Model. In ACM
Computing Surveys. 28A(4). December 1996.

[Aksit97] Mehmet Aksit. Issues in Aspect-Oriented Software Development. Position paper at the ECOOP ’97
workshop on Aspect-Oriented Programming.

[Bader and Elrad 98a] Atef Bader and Tzilla Elrad. Framework and Design Pattern for Concurrent Passive Ob-
jects. In Proceedings of IASTED/SE ’98.

[Bader and Elrad 98b] Atef Bader and Tzilla Elrad. The Adaptive Arena: Language Constructs and Architectural
Abstractions for Concurrent Object-Oriented Systems. In Proceedings of ICPADS ’98.

[Bardou98] Daniel Bardou. Roles, Subjects, and Aspects. How do they Relate? Position paper at the ECOOP
’98 workshop on Aspect-Oriented Programming.

[Becker98] Ulrich Becker. D2AL: A Design-based Aspect Language for Distribution Control. Position paper at
the ECOOP ’98 workshop on Aspect-Oriented Programming.

[Berger et al. 98] L. Berger, A. M. Dery and M. Fornarino. Interactions Between Objects: An Aspect of Object-
Oriented Languages. Position paper at the ECOOP ’98 Workshop on Aspect-Oriented Programming.

[Beugnard99] Antoine Beugnard. How to Make Aspects Reusable; A Proposition. Position paper at the
ECOOP’99 workshop on Aspect-Oriented Programming.

[Böllert98a] Kai Böllert. Aspect-Oriented Programming Case Study: System Management Application. Position
paper at the ECOOP ’98 workshop on Aspect-Oriented Programming.

[Böllert98b] Kai Böllert. Aspect-Oriented Programming. Case Study: System Management Application.
Graduation Thesis presented to the Fachhochschule Flensburg (Germany), 1998.

[Böllert99] Kai Böllert. On Weaving Aspects. Position paper at the ECOOP’99 workshop on Aspect-Oriented
Programming.

[Constantinides et al. 99] Constantinos Constantinides, Atef Bader, Tzilla Elrad. An Aspect-Oriented Design
Framework for Concurrent Systems. Position paper at the ECOOP’99 workshop on Aspect-Oriented Program-
ming.

[Dempsey and Cahill 97] John Dempsey and Vinny Cahill. Aspects of System Support for Distributed Comput-
ing. Position paper at the ECOOP ’97 Workshop on Aspect-Oriented Programming.

[DoD80] U.S Department of Defense. Ada Reference Manual. July, 1980.

[Dijkstra76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[Fabry98] Johan Fabry. Replication as an Aspect. Position paper at the ECOOP’98 workshop on Aspect-
Oriented Programming.

[Gosling et al. 96] J. Gosling, B. Joy, and G. Steele. The JavaTM Language Specification. Addison-Wesley,
ISBN 0-201-663451-1, 1996.

10

[VanHilst97] Michael VanHilst. Subcomponent Decomposition as a Form of Aspect-Oriented Programming.
Position paper at the ECOOP ’97 workshop on Aspect-Oriented Programming.

[Jézéquel and Meyer 97] Jean-Marc Jézéquel, and Bertrand Meyer. Design by Contract: The Lessons of Ariane.
In IEEE Computer. January 1997, pp. 129-130.

[Kenens et al. 98] P. Kenens, S. Michiels, F. Matthijs, B. Robben, E. Truyen, B. Vanhaute, W. Joosen and P.
Verbaeten. An AOP Case with Static and Dynamic Aspects. Position paper at the ECOOP ’98 workshop on As-
pect-Oriented Programming.

[Kiczales et al. 97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of ECOOP ’97. LNCS 1241.
Springer-Verlag, pp. 220-242. 1997.

[Lamping97] John Lamping. The Interaction of Components and Aspects. Position paper at the ECOOP ’97
workshop on Aspect-Oriented Programming.

[Lopes97] Cristina V. Lopes. D: A Language Framework for Distributed Programming. Ph.D. Thesis. Graduate
School of the College of Computer Science. Northeastern University. Boston, Massachusetts, 1997.

[Lopes and Kiczales 98] Cristina Lopes and Gregor Kiczales. Recent Developments in AspectJ. Position paper
at the ECOOP ’98 workshop on Aspect-Oriented Programming.

[Lorenz98] David H. Lorenz. Visitor Beans; An Aspect-Oriented Pattern. Position paper in ECOOP ’98 work-
shop on Aspect-Oriented Programming.

[Lunau97] Charlotte Pii Lunau. A Reflective Architecture for Process Control Applications. In Proceedings of
ECOOP ’97. Lecture Notes in Computer Science 1241. Pages 170-190. Springer-Verlag, 1997.

[Lunau98] Charlotte Pii Lunau. Is Composition of Metaobjects = Aspect Oriented Programming. Position paper
at the ECOOP ’98 workshop on Aspect-Oriented Programming.

[Matthijs et al. 97] Frank Matthijs, Wouter Joosen, Bart Vanhaute, Bert Robben, and Pieere Verbaeten. Aspects
Should not Die. Position paper at the ECOOP ’97 workshop on Aspect-Oriented Programming.

[Mens et al. 97] Kim Mens, Cristina Lopes, Badir Tekinerdogan, and Gregor Kiczales. Aspect Oriented Pro-
gramming; Workshop Report. Position paper at the ECOOP ’97 workshop on Aspect-Oriented Programming.

[Meyer] Bertrand Meyer. Building bug-free O-O software: An Introduction to Design by ContractTM. Available
electronically at http://www.eiffel.com/doc/manuals/technology/contract/page.htm

[Meyer92] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[OMG98] Object Management Group. The Common Object Request Broker: Architecture and Specification.
1998.

[Ossher and Tarr 99] Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns in Hyperspace.
Position paper at the ECOOP ’99 workshop on Aspect-Oriented Programming.

[Parnas72] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. In Communications
of the ACM. Vol. 15. No. 12. Pages 1053-1058. December, 1972.

11

[Pryor and Bastán 99] Jane Pryor and Natalio Bastán. A Reflective Architecture for the Support of Aspect-
Oriented Programming in Smalltalk. Position paper at the ECOOP’99 workshop on Aspect-Oriented Program-
ming.

[Sanchez et al. 98] Fernando Sanchez, Juan Hernandez, Juan Manuel Murillo, and Enrique Pedraza. Run-Time
Adaptability of Synchronization Policies in Concurrent Object-Oriented Languages. Position paper at the
ECOOP ’98 workshop on Aspect-Oriented Programming.

[Seinturier99] Lionel Seinturier. JST: An Object Synchronization Aspect for Java. Position paper at the
ECOOP’99 workshop on Aspect-Oriented Programming.

[Stroustrup86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[Tekinerdogan and Aksit 98] Bedir Tekinerdogan and Mehmet Aksit. Deriving Design Aspects from Canonical
Models. Position paper at the ECOOP ’98 workshop on Aspect-Oriented Programming.

[DeVolder98] Kris De Volder. Aspect-Oriented Logic Meta Programming. Position paper at the ECOOP ’98
workshop on Aspect-Oriented Programming.

[Welch and Stroud 99] Ian Welch and Robert Stroud. Load-time Application of Aspects to Java COTS Soft-
ware. Position paper at the ECOOP’99 workshop on Aspect-Oriented Programming.

