
Migrating a Static Analysis Tool to AspectJTM

Martin P. Robillard and Gail C. Murphy

Department of Computer Science

University of British Columbia

201-2366 Main Mall

Vancouver BC Canada V6T 1Z4

fmrobilla,murphyg@cs.ubc.ca

November, 1999

OOPSLA '99 Workshop on Multi-dimensional

Separation of Concerns in Object-oriented Systems.

1 Introduction

Software design and programming techniques that provide explicit support for

separating concerns are intended to help developers more easily express and

evolve software systems. The degree to which these techniques can aid a soft-

ware developer is dependent on the di�culty of determining what the separable

concerns are within a system.

To gain a sense of the kinds of concerns which might be useful to separate in

a system, we examined the source for the Jex static analysis tool, which extracts

exception information from Java �les [5]. To gain a sense of the process involved

in actually separating a concern from an existing code base, we migrated Jex's

Java code base to AspectJTM [7]. AspectJ provides aspect-oriented program-

ming [3] support for Java.

This position paper describes this migration case study. Section 2 brie
y

describes the relevant elements of the architecture of Jex, and lists the aspects

that have been used in the redesign. Section 3 describes the porting of the initial

code to a version using aspects. Section 4 discusses the use of aspects in the

design of object-oriented code.

2 Jex and Aspects

2.1 The Architecture of Jex

Jex is a tool for extracting exception information from Java source �les [5]. It

comprises 23000 lines of commented Java source code spread over 138 classes.

1

The architecture of Jex consists of �ve components: the application con-

troller, the parser, the abstract syntax tree (AST), the type system, and the

Jex loader (Figure 1).

Relationships

Creates

Knows about

Type System

Controller

ASTParser

Jex Loader

Figure 1: The Simpli�ed Architecture of Jex.

The application controller is the entry point to Jex. It processes the

command-line arguments, loads the type system, and invokes the parser on

the input �le, which returns a reference to an AST representing the input �le.

The controller then requests the AST to perform various functions, including

exception analysis.

The AST contains functionality to analyze the type of expressions, to deter-

mine a call order within the methods of a class, to extract exception information

about the program, and to generate an output �le containing exception-related

information. The AST component comprises 94 classes representing mostly the

di�erent node types.

The AST relies on the type system and on the Jex loader components to

perform the task of exception information generation. It uses the type system

to obtain a list of all implementations of a particular method. The Jex loader

is used to determine the exceptions that can be raised by a Java method call.

All the modi�cations described in this document apply to the AST compo-

nent.

2.2 Aspects Identi�ed

In an attempt to make a cleaner design and to promote reuse, three main con-

cerns were identi�ed and introduced as aspects: JexPathA,JexA and ControlFlowA.1

1Although other aspects, such as debugging and error handling, were created as a part of

this experiment, they are not described in this document because they are archetypal.

2

JexPathA is a global variable aspect. It introduces a variable, the Jex path, that

is global to the application. JexA and ControlFlowA are decomposition aspects.

They allow functionality to be factored out of the AST code.

3 Implementing Aspects

Modi�cations to the code of Jex release 1.0 were carried out using AspectJ

version 0.3beta3. The following subsections describe the details of the changes

to the code necessary to implement each aspect.

3.1 The JexPathA Aspect

During the generation of exception information, some nodes in the AST need

to determine where to save newly created Jex information �les. The directory

in which to store these �les is obtained as a command-line argument. Since

only a very small subset of the AST nodes need to access this information, it

was not deemed convenient to pass it along the call chain of the AST methods.

Instead, in the initial design, the Jex directory was stored as a system property.

Another alternative not using aspects would have been to store the value as a

globally-available, class-scoped attribute.

In an attempt to provide a more robust solution for this problem, the aspect

JexPathA was designed to store the Jex directory. The aspect contains a String

attribute holding the value of the directory, and introduce weaves2 for get and

set operations on the attribute (Figure 2).

aspect JexA

{

private static aJexPath = "";

introduce public void Analyzer.setJexPath(String pJexPath)

{

aJexPath = pJexPath;

}

introduce public String ASTAllocationExpression.getJexPath(),

ASTConstructorDeclaration.getJexPath(),

ASTExplicitConstructorDeclaration.getJexPath(),

ASTMethodInvocationExpression.getJexPath()

{

return aJexPath;

}

}

Figure 2: The JexPathA Aspect

To install this aspect in the Jex code, it was necessary to identify all state-

ments that accessed the system property with the key identifying the Jex di-

2In AspectJ 0.4, weaves are called crosscuts. In this paper, we retain the original termi-

nology and syntax of AspectJ 0.3beta3.

3

rectory. Occurrences of the setProperty and getProperty methods were then

replaced by the equivalent method names used in the aspect, and a descriptor

was added for the classes in the JexPathA introduce declarations.

The advantage of this approach compared to the system property or static

class approaches is that it allows the programmer to statically restrict access to

the globally available Jex directory value. In other words, the aspect explicitly

names the classes that can write or read the directory value. This prevents

accidental accesses to the value by other classes.

The disadvantage of using this approach is that it is not possible to compile

the classes which use the JexPathA aspect without weaving them with the aspect.

Of the three approaches implemented (system property, static class, aspect), the

static class was the one retained, for both its simplicity and its non-intrusiveness.

3.2 The JexA Aspect

In the initial design of Jex, the various operations on the AST were coded

directly in the AST nodes. General behavior was coded in the class SimpleNode,

and specialized behavior was coded in subclasses of SimpleNode implementing

speci�c node types, such as Expression or Statement. The operations de�ned

in AST nodes include support for parser actions, type analysis, and exception

information generation.

To enable the use of the AST as a stand-along framework for the analysis of

Java programs, we wanted to factor out the exception generation functionality.

The exception generation functionality is distributed amongst three types

of methods: generateExceptions, buildExceptionStructure, and getExceptions.

The method generateExceptions is used to carry out the command to generate

exception information from the root of the AST, the CompilationUnit node, to

the individual class body declarations containing methods and constructors to

analyze. The buildExceptionStructure method is used by every statement to

add exception information to a dynamically-allocated structure describing the

exception
ow for every method. Finally, the getExceptions method is used to

obtain the set of exceptions that can be raised by a particular expression.

These three methods form a phase of operations that is completely indepen-

dent from other processing performed on the AST, such as resolving the type

of expressions. These methods also access data in the AST nodes in a sequence

that does not interfere with previous or future operations on the AST. It was

thus relatively easy to create an aspect, JexA, containing all of the exception

generation methods. Forming this aspect meant the methods left in the AST

nodes supported generic analysis operations such as parser actions and type

analysis.

The modi�cations to the code necessary to install this aspect were limited

to moving exception generation methods from the AST node classes to the JexA

aspect �le, as introduce weaves.

There are many advantages to this decomposition. First, it is now easier

to reuse the AST component for tasks other than exception analysis because

it is not cluttered with exception generation operations. Second, the aspect

4

provides a nice modular structure for adding features to the AST component.

For example, to add the exception generation, it is now only necessary to \weave

in" the exception aspect JexA.

One could argue that similar bene�ts can be obtained using the Visitor de-

sign pattern [1]. However, aspects are a more elegant and more
exible solution.

More elegant because it is not necessary to have a huge Visitor interface includ-

ing an accept method for all of the di�erent types of nodes, and because the

nodes do not have to implement the accept callback. More
exible because it

can accommodate a call chain that does not necessarily follow the tree structure,

and because the methods can return values, like in the case of the getExceptions

methods. Furthermore, other advantages of the Visitor pattern, such as the ac-

cumulation of state, can also be implemented using aspects. Tarr et al. [6]

describe the addition of feature to an AST using aspects in a similar manner.

3.3 The ControlFlowA Aspect

The exception generation operations, factored out as described in the previous

section, rely on the knowledge of the total call order of the methods of a class

being analyzed (this information was perhaps inappropriately named \Control

Flow" in the design). In the original version of Jex, since such control
ow

information is only necessary when exception analysis is to be performed, the

corresponding functionality was embedded in the exception generation code.

A goal of the redesign was to factor out the control
ow functionality, in

order to provide it as a separate AST service. In comparison to the exception

generation aspect, factoring out the control
ow required substantial redesign.

The redesign required modifying the class hierarchy of certain types of nodes,

introducing a new class, and moving functionality between di�erent classes

(see Figures 3 and 4).

ASTClassBody

ExceptionGenerator

MethodInfo

OperationDeclarationINode

SimpleNode

<ASTNodes>

Interface access

Aggregation

Dependency

Figure 3: Initial Control-Flow Design

In the original design, once a ClassBody node received a generateExceptions

message, it created an ExceptionGenerator object, which, in turn, created and

initialized a data structure to hold control-
ow information. This data structure

5

ASTClassBody

ExceptionGenerator

MethodInfo

OperationDeclarationINode

SimpleNode

<ASTNodes>

<ASTNodes>

OperationDeclaration

ControlFlow

Figure 4: Modi�ed Control-Flow Design

was composed of MethodInfo objects initialized with OperationDeclarationI ob-

jects. MethodInfo object contain attributes and methods related to both control-

ow and exception information generation activities. This caused a problem of

coupling between the exception information generation and control-
ow extrac-

tion activities.

In the new design, the class ControlFlow was created to hold the structures

that were previously held in the ExceptionGeneration object. Operations to

generate control-
ow were then moved to the ControlFlow class. To decouple

the control-
ow operations from the exception-related operations in MethodInfo,

the control-
ow data structure was made to hold OperationDeclarationI objects

instead of MethodInfoobjects, and the services necessary for control-
ow analysis

were moved from the MethodInfo class to a new class, OperationDeclaration,

inserted in the AST node hierarchy.

This redesign successfully factored out the control
ow from the exception

generation aspect. It is now possible to provide an AST with only type analysis

operations, or with additional control-
ow and exception generation operations.

The installation of the ControlFlowA aspect in the design of Jex introduced

some interesting issues, like linking classes to aspects and dependent aspects.

Linking classes to aspect refers to the fact that in the new design, the ControlFlow

class is only necessary in conjunction with the ControlFlowA aspect and can be

removed from distributions not including the control-
ow feature. The inser-

tion of the ControlFlowA aspects also introduced a dependency between aspects,

because, since it relies on control-
ow operations, the JexA aspect can now only

be weaved in together with the ControlFlowA aspect.

4 Discussion

While designing with aspects, and especially with the JexA and ControlFlowA

aspects, it was useful to think about aspects as architectural layers with weaving

6

serving as an architectural connector.

This approach was useful because it supported a decomposition of compo-

nents that was not possible using Java alone. Using aspects as layers also made

it possible to avoid potentially \dangerous" uses of aspects, such as aspects with

bidirectional coupling [2].

Using a \layered" approach to the aspect design meant that di�erent au-

tonomous entities could be generated depending upon which aspects were lay-

ered together. For example, in the Jex redesign, each of the three compilable

combinations of JexA and ControlFlowA (AST, AST + ControlFlowA, AST +

JexA + ControlFlowA) form di�erent autonomous components.

Since the initial architecture of Jex heavily relied on components having

their interactions de�ned at compile time, this case study focused on AspectJ's

static composition capabilities. AspectJ also supports dynamic aspects, which

could have been used to add more dynamically-con�gurable features.

5 Summary

Two useful aspects were identi�ed for the Jex static analysis tool: an aspect

containing analysis speci�c code (e.g., for exception analysis), and an aspect

containing optional analysis functionality (e.g., coarse-granularity control-
ow).

Both of these aspects are decomposition aspects which allow functionality to

be factored out of an existing code component, a collection of classes imple-

menting an AST component. Factoring the code into aspects rendered the AST

component more reusable.

One aspect factored very cleanly out of the existing code base. In essence,

the code comprising this aspect was already separated within the existing code

base: Java had simply not provided any language facilities to make the separa-

tion explicit. It was more di�cult to factor out the second aspects, requiring

introduction of new classes, etc. This aspect represented code which had not

been recognized as separable when the system was �rst coded. Standard refac-

toring techniques [4] could have aided the migration process to the aspect form.

Acknowledgments

This research was funded by the Xerox Corporation.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and Jonh Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[2] Mik A. Kersten and Gail C. Murphy. Atlas: A case study in building a

web-based learning environment using aspect-oriented programming. In

7

Proceedings of the Conference on Object-Oriented Programming, Systems,

Languages, and Applications, 1999. To appear.

[3] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

oriented programming. In Proceedings of the European Conference on Object-

Oriented Programming, number 1241 in Lecture Notes in Computer Science,

pages 220{242. Springer-Verlag, June 1997.

[4] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois at Urbana-Champaign, 1992.

[5] Martin P. Robillard and Gail C. Murphy. Analyzing exception
ow in JavaTM

programs. In Proceedings of the Joint 7th European Software Engineering

Conference and 7th ACM SIGSOFT International Symposium on the Foun-

dations of Software Engineering, volume 1687 of Lecture Notes in Computer

Science, pages 322{337. Springer-Verlag, September 1999.

[6] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton.

N degrees of separation: Multi-dimensional separation of concerns. In Pro-

ceedings of the 21st International Conference on Software Engineering, pages

107{119, May 1999.

[7] Xerox PARC. AspectJ HomePage. http://aspectj.org.

8

