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Abstract. We show that, from the output of a simple 3D human pose trackerone
can infer physical attributes (e.g., gender and weight) and aspects of mental state
(e.g., happiness or sadness). This task is useful for man-machinecommunication,
and it provides a natural benchmark for evaluating the performance of 3D pose
tracking methods (vs. conventional Euclidean joint error metrics). Based on an ex-
tensive corpus of motion capture data, with physical and perceptual ground truth,
we analyze the inference of subtle biologically-inspired attributes from cyclic
gait data. It is shown that inference is also possible with partial observations of
the body, and with motions as short as a single gait cycle. Learning models from
small amounts of noisy video pose data is, however, prone to over-fitting. To mit-
igate this we formulate learning in terms of domain adaptation, for which mocap
data is uses to regularize models for inference from video-based data.

1 Introduction

The fidelity with which one needs to estimate 3D human pose varies from task to task.
One might be able to classify some gestures based on relatively coarse pose estimates,
but the communication of many biological and socially relevant attributes, such as gen-
der, age, mental state and personality traits, necessitates the recovery of more subtle
cues. It is generally thought that current human pose tracking techniques are insuffi-
cient for this task. As a consequence, most previous work on action recognition, ges-
ture analysis, and the extraction of biometrics, has focused on 2D image properties, or
holistic spatiotemporal representations. On the contrary, we posit that it is possible to
infer subtle human attributes from video-based 3D articulated pose estimates. Further,
we advocate the inference of human attributes as a natural, meaningful way to assess
the performance of 3D pose tracking techniques.

In this paper, we consider the inference of gender, age, weight and mood from video-
based pose estimates. One key problem is the lack of suitabletraining data comprising
labeled image sequences with 3D pose estimates. To deal withthis issue, our models are
bootstrapped from a substantial corpus of human motion capture data, and then adapted
using a simple form of inductive transfer learning. In particular, the adaptation accounts
for differences between the distributions of features derived from mocap and the video-
based pose tracking data. Ground truth gender, age and weight are provided with the
mocap and some video-based pose tracking data. We also consider models trained on
perceived attributes gathered from human perception experiments over the internet. For
various aspects of mental state, like mood (happiness), human perception is, at present,
our principal source of (ground truth) training data.
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The inference of human attributes has myriad potential uses, ranging from human-
computer interaction to surveillance to clinical diagnostics. E.g., biometrics are of in-
terest in security, and retails stores are interested in shopper demographics. The range
of potential applications increases further as one considers a wider range of attributes,
including, for example, the degree of clinical depression [17], or levels of anxiety.

The goal of this paper is to demonstrate a simple proof-of-concept model for at-
tribute inference. We restrict our attention to walking motions, a generic 3D pose tracker,
the extraction of simple motion features, and a very basic set of attributes. Pose tracking
from two views is accomplished with an Annealed Particle Filter [8, 29], with a like-
lihood derived from background subtraction and 2D point tracks. We avoid the use of
sophisticated activity-specific prior models (e.g., [18, 30]) that are prone to over-fitting,
thereby biasing pose estimates and masking useful information. Following [23, 28, 31,
33] our motion features are derived from a low-dimensional representation of joint tra-
jectories in a body-centric coordinate frame. We then use a regularized form of logistic
regression for classification. The experimental results show that one can infer attributes
from video pose estimates (at 60–90% accuracy depending on the attribute). We are
confident these results can be improved with advances in 3D pose tracking.

2 Background and Related Work
Perception of Biological Motion: Almost 40 years ago, Johansson [12] showed that a
simple display with a small number of dots, moving as if attached to major joints of
the human body, elicits a compelling percept of a human figurein motion. Not only can
we detect people quickly and reliably from such displays, wecan also retrieve details
about their specific nature. Biological motion cues enable the recognition of familiar
people [6, 32], and the inference of attributes such as gender, age, mental state, actions
and intentions, even for unfamiliar people [3, 20, 31].

Humans reliably classify gender from point-light walkers with a hit rate (correct
classification rate) of 65 to 75%; frontal views are classified best [20, 25, 31]. Studies
have focused on cues that mediate gender classification, such as the shoulder-hip ratio
[7] or the lateral sway of the upper body that is more pronounced in men [20]. Interest-
ingly, depriving observers of kinematics degrades gender classification rates. When in
conflict, information conveyed by dynamic features dominates that of static anthropo-
metrics [20, 31]. Using PCA and linear discriminants Troje [31] modeled such aspects
of human perception. Similar models have even been shown to convey information
about weight and mood and the degree of depression in clinical populations [17].

Biometrics: Gait analysis is closely related to our task here. There is a growing liter-
ature on gait recognition, and on gender discrimination from gait (see [4] for a good
overview), and a substantial benchmark datasets exist for gait recognition ([27]). How-
ever, such datasets are not well suited for 3D model-based pose tracking as they lack
camera calibration and resolution is often poor. Indeed, most approaches to gait recog-
nition rely mainly on background subtraction and properties of 2D silhouettes. Very few
approaches exploit articulated models, either in 2D or 3D (although see [33, 35]).

Like gait recognition, gender classification from gait is usually formulated in terms
of 2D silhouettes, often from sagittal views where the shapeof the upper body, rather
than motion, is the primary cue (e.g., [16, 19]). With multiple views some form of voting
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is often used to merge 2D cues [10]. The use of articulated models for gender discrim-
ination has been limited to 2D partial-body models. Yooet al., [34] used a set of 19
features, including 2D joint angles, dynamics of hip angles, the correlation between
left and right leg angles, and the centre coordinates of the hip-knee cyclogram, with
linear and RBF SVMs, and a 3-layer feed-forward neural net for gender classification.
Samangooei and Nixon [26] consider video retrieval with physical attributes that in-
clude gender, age and weight. But they assume 2D sagittal views and a green screen to
simplify the extraction of silhouette-based gait signatures.

Unlike the gait recognition problem, inferring attributesof unfamiliar people does
not presuppose that test subjects exist in the training data. Further, by using 3D artic-
ulated tracking we avoid the need for view-based models and constrained domains (cf.
[10, 26, 34]). The video sequences we use were collected in anindoor environment with
different (calibrated) camera locations, most of which didnot include a proper sagittal
view. Finally, here we infer physical attributes as well as aspects of mental state, like
the mood of the subject. To our knowledge this is the first paper that attempts to address
recovery of such attributes collectively from video-based3D pose estimates.

Action Recognition: Like biometrics, most work on action recognition has focused on
holistic space-time features, local interest points or space-time shapes (e.g., [9, 14, 21]),
in the image domain rather than with 3D pose in a body-centricor world frame. It is
widely believed that 3D pose estimation is sufficiently noisy that estimator bias and
variance will outweigh the benefits of such compelling representations. Nevertheless,
some recent methods have successfully demonstrated that this may not be the case (e.g.,
[22]). Unlike such work focused on classifying very different motion patterns, we tackle
the more subtle problem of inferring meaningful percepts from locomotion.

3D Pose Tracking: The primary benchmark for evaluating techniques for pose tracking,
HUMAN EVA [29], uses the 3D Euclidean distance between estimated and ground truth
(mocap) joint positions. Errors in joint positions and joint angles are easy to measure,
but it is not clear how they relate to task requirements. WillRMSE (root-mean-squared
error) of 70mm be sufficient to determine gender or mood, or for gesture recognition?
Some trackers with errors of 70mm might preserve the relevant information while oth-
ers may not. As such, task-specific measures, like attributeinference, complement con-
ventional RMSE measures. In particular, attribute inference is relatively complex as
it depends on subtle pose and motion information. Furthermore, unlike many activity
recognition tasks, which depend on motion and scene context(e.g., [15]), attribute in-
ference is mainly a function of information intrinsic to theagent or the perception of the
agent’s motion. Human attributes are of clear social significance, and may be directly
relevant to applications. That said, an extensive comparison of different pose trackers
based on attribute inference is beyond the scope of this paper.

3 Human Motion and Attribute Data

Models for different attributes are learned from a combination of partially labeled video
and motion capture data. Unfortunately, since we had video data from only20 subjects,
models trained on video-based tracking data are prone to over-fitting. On the other hand,
models learned from mocap should not be applied blindly to tracking data because many
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Fig. 1. Web Attribute Data: The top row shows histograms of average ratings from observers
for four attributes. The bottom row histograms show ground truth distributions of weight (kg) and
age (yrs). The numbers of observers and walkers rated for each attribute are given in the table.

of the discriminative features in mocap data cannot be reliably estimated during pose
tracking. Therefore, as discussed below (Sec. 4), we train from a combination of mocap
and tracking data using a simple formulation of transfer learning.

3.1 Motion Capture Data: Dmocap

Our source mocap data comprises walking motions from115 individuals. From41
physical markers we estimate15 3D “virtual markers” at major joints of the body,i.e.,
at shoulder joints, elbows, wrists, hip joints, knees, and ankles, and at the centers of
the pelvis, clavicles, and head. Each participant walked for several minutes within the
capture volume at their preferred speed, after which we began to record up to4 trials of
walking. The data are also labelled with gender, age and weight (see Fig. 1).

Human Subject Ratings: In addition to physical attributes we also consider perceived
attributes,i.e., what people perceive when viewing point-light displays ofwalking peo-
ple. With this data one can begin to explore biological cues that convey gender, age and
weight. More importantly, this provides us with labels about apparent mental state, such
as mood (happiness or sadness).

In a web-based experiment observers were asked to rate walkers using attributes of
their choosing. Each observer specified an attribute, and then rated up to 100 walkers (in
random order) on a scale of 1 to 6. They were also asked to entertwo phrases to indicate
what ratings of 1 and 6 represent.4 From ratings of over4000 observers, each of whom
rated at least 20 walkers, we selected sessions for which thenamed attribute was one
of “gender”, “age” or “weight”, and the labels for ratings 1 and 6 were meaningful. For
“gender” we accepted “male-female” or “masculine-feminine”, for “age” they had to
contain “young” and “old” (or “elderly”), and for “weight”,“light” and “heavy”. We
accepted any of “mood”, “emotion”, “happy”, or “happiness”for the mood attribute,
and ratings 1 and 6 had to include the words “happy” and “sad”.The resulting numbers
of subjects and trials are given in Fig. 1. For each of the100 walkers displayed, we
computed the average rating, over all observers. Fig. 1 shows the distributions. Although
data from experiments like this are noisier than those collected under more controlled
conditions, they do reveal consistent perceptual interpretations.

4 http://www.biomotionlab.ca/Demos/BMLrating.html



Human Attributes from 3D Pose Tracking 5

Fig. 2. Video Pose Tracking:The APF tracker uses a background model and 2D tracked points
from two views (top row). Tracking output for three subjectsare shown in the bottom three rows,
with average error in 3D joint locations of 63.7 (mm), 59.9 (mm), and 82.3 (mm) respectively.
Notice the differences in camera orientations and the background.

3.2 Video Pose Tracking Data:Dvideo

In addition to the mocap above, we also have synchronized binocular video (30Hz) and
mocap (120hz). We captured 2-3 sequences for each of 20 subjects (10 male, 10 female)
walking, with different camera configurations, but usuallywith views that were within
30◦ of frontal and sagittal. Each sequence was approximately two gait cycles in length.

The 3D pose tracker was a modified version of an Annealed Particle Filter (APF)
[8, 29]. The likelihood used a combination of a probabilistic background model with
shadow suppression, and 2D point tracks [11] (see Fig. 2 (top)). Point tracks were only
used for body parts that remain visible, the likelihood for which was formulated as a
truncated Gaussian (for robustness). The same likelihood was used for all subjects. We
used a15-part body model comprising truncated cylinders, with34 joint angles plus
global pose [29] (40 DOFs in total). The prior motion model was a smooth first-order
Markov model, with weak joint limits and inter-penetrationconstraints. The lack of an
activity-specific prior motion model was motivated by the desire to avoid biasing the
pose estimates towards a particular population. All experiments used the same APF
setup (200 particles/layer,5 layers), requiring roughly2 minutes/frame (Matlab). We
believe it is possible to estimate partial anthropometricsonline while tracking [2], but
for simplicity we assumed known anthropometrics.
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Fig. 3. Subspace Visualization:The distribution of motions inDmocap in the first 2 principal
dimensions is shown. (Left) Males (blue +) and females (red o). (Middle) Weight is depicted
with blended colors: Heavy (red) and light (blue). (Right) Video pose tracks and mocap from 5
subjects inDvideo are shown in 2 subspace dimensions: (color coded); circles indicate two video
trials, crosses corresponding tracks; (cyan –Dmocap males, yellow –Dmocap females).

The tracker performed well except when the legs were close; in rare cases the leg
identities were switched. In these cases we did not filter theresults in any way. In fact
we report performance on all tracks obtained. We ran the tracker twice on every test
sequence (yielding 80 pose trajectories). Sample trackingresults for three subjects are
shown in Fig. 2; in terms of the average Euclidean joint errors, the results are compa-
rable to state-of-the-art [29]. The average Euclidean error in 3D joint locations over the
80 runs had a mean of 73mm and a standard deviation of 19mm.

Finally, note that pose data inDvideo andDmocap have structual differences. To
facilitate video tracking the body model inDvideo had fewer degrees of freedom. Also
the mocap protocol used to estimate joint positions differed inDvideo andDmocap.

3.3 Motion Representation

Following [28, 31] we represent each motion as a pose trajectory, i.e., a vector com-
prising the 15 3D joint positions at each time step.5 We exploit the periodic nature of
locomotion, expressing each motion as a Fourier series [23,31]; two harmonics are suf-
ficient for walking [31]. To represent each pose trajectory,we encode the mean (DC)
pose, along with the Fourier coefficients at the fundamentalfrequency and its second
harmonic. This yields a 225-D vector for each motion (i.e., 5 real-valued Fourier coef-
ficients for each of 15, 3D markers). This encoding is somewhat robust to the noise in
the 3D poses within a trajectory, allowing us to better deal with the poor SNR of the
video-based pose data.

Let the Fourier-based representation of theseN motions be{mj}
N
j=1

, wheremj ∈

R
225. Not surprisingly we find that the dimension of the representation can be reduced

significantly with PCA. Since the SNR of the mocap data is muchhigher than the track-
ing data, we compute the subspace basis from the mocap data (from the 115 subjects
described above in Sec. 3.1). Well more than 90% of the data variance is captured in 16
dimensions; in practice, using more than 16 dimensions doesnot improve the accuracy
of attribute prediction appreciably.

5 Initially all the walkers are aligned. The world frame is oriented so subjects are walking along
the X-axis. We remove slow trends in the forward and lateral directions, based on the motion
of the COM (i.e., the average of all15 joint markers) the XY plane.
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Let B ≡ [b1, ...,bK ] denote the subspace basis, whereK is usually 16 or below.
Further, letcj denote the subspace coefficients formj ; i.e., cj = B

T (mj − m̄) where
m̄ is sample mean of the motion data{mj}. Fig. 3 depicts the distribution of gender and
weight in the first two principal directions. While not linearly separable, the attribute
structure is clearly evident.

Of course there are other possible motion features. For example, Yoo et al. [34]
use features of an articulated model extracted from a sagittal view of walking people,
from which they acheive good gender classification with SVMs. Based on their paper,
our implementation of their features with several different classifiers produces no better
than 75% correct gender classification on our mocap datasetDmocap, compared to hit
rates of 80%-90% obtained here (cf. Fig. 5).

4 Learning

Dmocap provides a significant corpus of labeled mocap,but the subspace motion fea-
tures fromDmocap andDvideo have different distributions. First, the pose data inDvideo

is based on a different joint parameterization (more suitable for video-based pose track-
ing). More importantly, the video tracking data has a lower SNR and is often biased
because certain parts of the body (e.g., the feet) are not tracked well. Indeed, some
features that are highly discriminative inDmocap will be uninformative inDvideo. Con-
versely, learning models from the small corpus of noisy video data inDvideo is prone
to over-fitting.

To mitigate these problems we formulate the learning problem as a form of trans-
fer learning, calleddomain adaptation. It is applicable when the source (Dmocap) and
target (Dvideo) domains share the same features, but have significantly different feature
distributions (e.g., see [24]). Intuitively, we learn source models from the mocap train-
ing data. The source models are then adapted to the video-feature domain through the
minimization of a loss function on the target data that is biased toward the source model
(e.g., [1, 5]). The resulting models generalize much better than those learned from the
video-based pose data directly, and they produce much better results than the direct
application of models learned fromDmocap.

In more detail, we use logistic classifiers for the inferenceof binary attributes and
for predicting human ratings. A logistic model expresses the posterior probability of an
attribute,g ∈ {0, 1}, as a sigmoidal functionσ(·) of distance from a planar decision
boundary, defined by parametersθ ≡ (w, b); i.e.,

p(g = 1 | c, θ) =
1

1 + exp(−cTw − b)
≡ σ(cT

w + b) . (1)

The weights that define the decision hyperplane are found by ML optimization. That is,
given source mocap data,{cs

j , g
s
j}

Ns

j=1
, the optimized parameters are found by minimiz-

ing the negative log likelihood of the data with respect to the weight vectorw and the
bias offsetb, i.e., θs = (ws, bs) = argminLs, where

Ls(w, b) = − log

Ns
∏

j=1

σ(cs
j ;w, b)gs

j (1 − σ(cs
j ;w, b))1−gs

j . (2)
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To adapt the model learned fromDmocap to the target dataDvideo, following [5],
we learn a logistic model on the target training data with a Gaussian prior centered
at the source model. That is, we minimize a loss function thatis a combination of
the negative log likelihood of the video training data,{ct

j , g
t
j}

Nt

j=1
, Nt ≪ Ns, and a

quadratic regularizer:

Lt(w, b) = − log

Nt
∏

j=1

σ(ct
j ;w, b)gt

j (1−σ(ct
j ;w, b))1−gt

j + λ||w − w
s||2 . (3)

While this formulation assumes an isotropic prior, with variance1/λ, the loss function
is easily generalized to an anisotropic prior that allows some weights to drift more than
others. The covariance for an anisotopic prior might be set according to the ratio of
variances in the subspace projections ofDmocap andDvideo respectively. Nevertheless
the experiments reported below are based on an isotropic prior.

Cross-validation is used to determineλ. Also, note that we do not regularize the
bias offset since it is often convenient to allowb to vary freely to account for any bias in
the tracking data. Minimization ofLt is accomplished with Newton iterations to solve
for critical points,i.e.,

∂Lt

∂w, b
=

Nt
∑

j=1

(σ(ct
j ;w, b) − gt

j)

(

c
t
j

1

)

+ λ

(

w−w
s

0

)

= 0 . (4)

One can generalize the approach to model the ratings data by replacing the ground
truth g in (3) with the average rating (scaled to(0, 1)). Treating the average rating as
the expected value ofg over different observers, (3) can be interpreted as the expected
likelihood. Also, while the approach formulated here presupposes labelled target data,
it is also possible to extend the technique to the semi-supervised case where the target
video data is not labeled (e.g., [1]).

In addition to simple classifiers for binary attributes, we also consider domain-
adapted least-squares (LS) regressors for real-valued attributes, such as age and weight.
For example, the adapted LS predictor for real-valued attributea minimizes

Lc(w, b) =

Nt
∑

j=1

[

(wT
c

t
j + b) − at

j

]2

+ λ||w − w
s
LS ||

2 . (5)

wherews
LS is the LS optimal weight vector learned from the mocap data inDmocap.

5 Models and Analysis of Source Data:Dmocap

We first learn models for the inference of different attributes using the labelled mocap
corpus,Dmocap. We tried learning with several different loss functions, including Gaus-
sian class-conditional models and linear/RBF SVMs, but none generalized significantly
better than logistic or linear LS regression. In all cases wecharacterize the expected
performance of the classifier/regressor using leave-one-out cross-validation.

Figure 4 (left) shows how gender classification depends on the subspace dimension
of the motion representation. With fewer than 16 dimensionsimportant information is



Human Attributes from 3D Pose Tracking 9

5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

Number of PCs

C
la

ss
if

ic
at

io
n

 R
at

e

5 10 15 20 25 30
4

5

6

7

8

9

Number of PCs

M
S

E
 E

rr
o

r 
(k

g
)

0 0.5 1 1.5 2
0.6

0.7

0.8

0.9

1

Sequence Length (gaits)

C
la

ss
if

ic
at

io
n

 R
at

e

Gender Weight Duration

Fig. 4. Effect of Subspace Dimension and Sequence Length:Leave-one-out cross validation is
used to asses the effect of subspace dimension on the correct-classification rate for the ground
truth gender classification (left) and the RMSE of the real-valued weight regressor (middle). The
right plot shows the dependence of gender classification on the duration (in gait cycles) of mocap
sequences (based again on leave-one-out cross-validation).

lost. Classification performance with more than 20 dimensions yields marginal gains;
with a 16D subspace the correct classification rate for gender is 90%. Fig. 4 (middle)
shows the behaviour of a LS predictor for weight. The weightsof our 115 walking
subjects ranged from 50 to 100 kg, while the RMSE of predictions (16D features and
leave-one-out cross-validation) is 5.4 kg. Fig. 4 (right) shows that gender can be classi-
fied with as little as one gait cycle (consistent with human perception [13]).

Normalized Models: To infer attributes from video pose estimates, we may not have ac-
cess to full 3D pose. For example, with monocular tracking one might be able estimate
3D pose only up to the overall scale of the subject. Many 3D pose trackers simply as-
sume the subject is average height (e.g., [2]). In extreme cases a pose tracker may have
no anthropometric knowledge whatsoever. To explore these cases we computed two fur-
ther subspace representations of the data inDmocap. First all walkers were normalized
to be the same height, and second, all anthropometrics are removed (by computing joint
angles and then using the mean anthropometrics to reconstruct the motions).

The first row of results in Fig. 5 gives the gender hit rate (i.e., correct classification
rate) and the RMSE of linear LS predictors for weight and age,all based on leave-one-
out (LOO) testing. One can see that the two normalized modelsare less informative than
using the full 3D data. Predictions from the height-normalized models are somewhat
better than the anthropometric-normalized models as expected. Also note that while
predictions of gender and weight are quite good, age is poorly predicted. The walking
subjects in this dataset ranged in age from roughly 18 to 35 years, while the RMSE for
age prediction is 6.9 years.

Incomplete Data: To infer attributes from video-based pose estimates, we must be able
to cope with missing data, since parts of the body may be partially or entirely occluded.
Let m ∈ R

225 be acomplete measurement vector (i.e., the Fourier coefficients for each
joint). Let the observed measurements bem0 = Pm, where the matrixP comprises
only those rows of the identity matrix that correspond to theobserved joints. It then
follows from the generative subspace model,i.e., m = Bc + m̄, that a LS pseudo-
inverse can be used to estimate the subspace coefficientsc0 from m0, i.e.,

c0 = (BT PT PB)−1
B

T PT (m0 − Pm̄) . (6)

The columns in Fig. 5 report model performance when data frommodel joints of
the upper body, or from the lower body, are used. Also reported are results when one
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Gender (% correct) Weight (RMSE kg) Age (RMSE yrs)
Full Height Motion Full Height Motion Full Height Motion

3D Norm. Only 3D Norm. Only 3D Norm. Only

Full 3D Pose 89.6 86.1 81.7 5.4 9.7 10.9 6.9 6.9 6.4
Upper 3D Body 87.8 86.1 80.9 5.9 9.9 11.0 7.0 7.1 6.3
Lower 3D Body 84.4 80.0 73.9 6.2 9.4 12.2 7.2 7.2 7.3
Frontal 2D Pose 87.0 80.0 76.5 5.5 9.6 10.8 7.0 7.1 6.9
Sagittal 2D Pose 80.9 83.5 79.1 9.9 11.5 12.2 7.1 7.0 6.7

Fig. 5. Inference withDmocap Models: To assess performance, with and without missing data,
we build 3 models:Full 3D uses known anthropometrics and kinematics;Height Normalized is
learned from mocap that is height normalized; andMotion Only uses only kinematic information
(all walkers have the same limb lengths). The lack of anthropometrics degrades performance,
but the inference of gender and weight are above chance in allmodels. We also report how
performance varies with different subsets of markers (e.g., upper/lower body) or 2D projections.
Again, despite degradation in performance, the models continue to predict attributes well.

Gender Weight Age Mood
Full 3D 94 93 88 94
Height Normalized 93 93 86 93
Motion Only 93 94 86 93

Fig. 6. Inference of Perceived Attributes:We report the accuracy of predictions of human rat-
ings for gender, weight, age and mood, all from the source mocap datasetDmocap. Perceived
attributes are quantized to one bit based on the average rating for each subject, and the output
of the logistic regressor is thresholded at 0.5. The table shows the fraction of subjects for which
the classifier matches the quantized rating. Notice that perceived attributes are generally better
predicted by the learned models than are ground truth attributes (cf. age in Fig. 5).

uses 2D data under orthographic projection from frontal or sagittal views. Interestingly,
the observation that frontal views are more informative than sagittal views is consistent
with studies of human perception [31].

Predicting Human Ratings: It is also interesting to consider how well one can predict
perceived attributes. This is a scientific curiosity for physical attributes likegender, age
and weight. For mood, however, we have no physical ground truth. Rather, the per-
ceived mood is our only labelled data source. For all attributes, because our perceptual
rating data are noisy, we quantize ratings of each attributeto one bit;i.e., each walker is
(perceived to be) (1) male or female, (2) heavy or light, (3) young or old, and (4) happy
or sad. Then, the average attribute rating for a given training subject (scaled to(0, 1))
is taken to be the corresponding probability of being male, heavy, old, and happy, re-
spectively. We use logistic regression to predict these probabilities, with leave-one-out
measures of performance given in Fig. 6.

It is striking that, in all cases, we can do a better job predicting human ratings
than ground truth. Human observers are, purportly using theavailable visual cues in a
consistent manner, even if it is inconsistent with the ground truth. In particular, while
true age is very hard to predict, perceived age is predicted well; it’s not how old you are,
it’s how old you look. While interesting, this also shows clearly that perceviedattributes
may be biased, and therefore require qualification.
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Fig. 7. Domain Adaptation: (a) Gender classification from themocap in Dvideo for 20 test sub-
jects (from leave-one-out performance), as a function of the strength of the priorλ, for each of
3 models (full 3D, height normalized, motion only). (b) Gender classification from the video-
basedpose tracking data for 20 test subjects (leave-one-out performance). (c) RMSEof weight
estimates frompose tracking data, for 20 test subjects, as a function of the strength of the prior.

6 Attribute Inference from Dvideo

Given the source models learned fromDmocap, we use domain adaptation to learn mod-
els for the test pose data inDvideo. Not only is this useful in generating models for the
video pose tracking data, it is also useful in building a classifier from the test mocap in
Dvideo. The reason is that the pose data inDvideo is noisier and is parameterized dif-
ferently from that inDmocap. The mocap inDmocap allows for variable joint locations,
while the parameterization of the tracker used inDvideo has fixed joints. The tracker
also has a fewer DOFs. Hence there are structural differences even between the mocap
in Dmocap and that inDvideo.

Domain Adaptation: Figure 7 (left) show the leave-one-out hit rates for gender classi-
fiers learned fromDvideo with domain adaptation fromDmocap. The curves show how
performance depends on adaptation from the source model, asa function ofλ (see (3)
in Sec. 4). The highest hit rates occur withλ between103 and104. For comparison, the
crosses (x) depict the hit rate when there is no domain adaptation (i.e., withw

s = 0

in (3)). The circles (o) depict the hit rate when the classifiers are trained solely on
the source dataDmocap (with no domain adaptation) and then tested on the mocap in
Dvideo. Remember that the body model inDvideo has fewer degrees of freedom and was
estimated using a different mocap protocol from that in the original mocap inDmocap.
Hence even the mocap motion features inDmocap andDvideo are distributed differently,
and hence the value of domain adaptation.

Pose Tracking Data: Figure 7 (middle) shows leave-one-out hit rates for gender from
video-based 3D pose tracking data (two trials of the APF, foreach of 2 walking se-
quences for each of 20 subjects). As above, the curves show the dependence on the
strength of the prior from the source model. The crosses (x) depict hit rates with no do-
main adaptation (from pose tracking data alone), and the circles (o) depict the hit rates
from classifiers trained solely on the source mocap dataDmocap. It is not clear why the
full 3D model with pose tracking data is much worse than that with mocap input.

Figure 7 (right) shows how predictions of weight from video-based 3D pose data
depends on domain adaptation. As above, the crosses (x) and the circles (o) show that
predictions are poor when based solely on the data inDmocap or inDvideo. With domain
adaptation the results improve significantly. The standarddeviation of the weight among
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Gender - mocap Gender - tracking Weight - mocap Weight - tracking
(% correct,λ = 10

4) (% correct,λ = 10
4) (RMSE kg,λ = 10

1.5) (RMSE kg,λ = 10
5)

Full Height Motion Full Height Motion Full Height Motion Full Height Motion

3D Norm. Only 3D Norm. Only 3D Norm. Only 3D Norm. Only

Cmocap 75.0 65.0 62.5 53.8 57.5 47.5 5.7 10.9 6.6 51.4 42.1 42.7
Ctrack 65.0 57.5 42.5 55.0 55.0 50.0 4.0 7.3 6.9 12.5 13.1 14.5
CtrackTL 77.5 70.0 67.5 61.3 73.8 61.3 3.6 7.6 6.0 10.6 10.9 12.4

Fig. 8. Attributes from Mocap and Pose Tracking Data:The tables reports leave-one-out per-
formance on gender classification and weight prediction from test mocap and pose tracking data
in the target datasetDvideo of 20 subjects. There are 40 mocap sequences (2 walks/subject), and
80 pose trajectories from video tracking (2 tracking trialsper sequence). Results from 3 models
are reported:Cmocap is learned from the source mocapDmocap; Ctrack is learned solely from
test dataDvideo; CtrackTL is learned withDvideo and domain adaptation fromDmocap.

the test subjects is approximately 12kg. With domain adaptation, with λ = 105, the
RMSE decreases to approximately 10.6. These results with tracking data are worse than
those based on training mocap data in Fig. 5, but we find them encouraging nonetheless.

Figure 8 gives numerical results for gender classification and weight prediction,
from both test mocap and test pose tracking data (like the plots in Fig. 7). As above,
we show results from three models:Cmocap is learned solely from the source mo-
capDmocap; Ctrack is learned solely from test dataDvideo; CtrackTL is learned with
Dvideo and domain adaptation fromDmocap. Not surprisingly, the predictions of gen-
der and weight from on video tracking data are not as reliableas those from the mocap.
They are, however, encouraging. While not shown in the figure, we also note that errors
in gender classification are reasonably consistent betweenthe test mocap and the test
tracking data. Approximately 85% of the motions classified from the pose tracking data
are concistent with classification from the corresponding mocap. Thus, while some of
the errors in Fig. 8 are due to noise in the pose tracking data,some are due to the fact
that indeed some females consistently walk like males and vice versa.

Inference of Perceived Attributes: Figure 9 reports leave-one-out hit rates in the pre-
diction of theperceived attributes. Like the above experiment in Fig. 6 we quantize
perceptual ratings to one bit and use logistic regression for classification (e.g., happy
vs. sad). For the purposes of this experiment we also consider the perceptual data as the
ground truth (indeed for perceived mental state,e.g., mood, that is our only source of
data label) and look at the consistency of predictions between the leave-one-out model
trained with mocap and with video tracking results fromDvideo.

The consistency between the mocap and pose tracking is very good, with consistent
classification rates between 74% to 93%. It is interesting tonote that we can recover the
mental state – mood (happiness), with 85% to 86% accuracy. Like the results reported in
Fig. 6 the perceived age is predicted well when compared to our models for predicting
true age.

7 Discussion

This paper demonstrates that one can, from the output of a video-based, 3D human
pose tracker, infer physical attributes (e.g., gender and weight) and aspects of mental
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Gender Weight Age Mood
CtrackTL (Full 3D) 83 79 93 86
CtrackTL (Height Normalized) 74 79 90 85

Fig. 9. Classification of Perceived Attributes with Respectto MoCap: The table reports con-
sistency of leave-one-out performance onperceived gender, weight, age and mood (happiness)
between test mocap and pose tracking data in the target datasetDvideo of 20 test subjects. We use
predicted attribute values for test mocap as targets to train CtrackTL binary classifiers (learned
with Dvideo and domain adaptation fromDmocap, all with λ = 10

4).

state (e.g.. happiness). The models are used to infer binary attributes(gender) and real-
valued attributes (weight). We also consider the prediction of perceived attributes based
on human perceptual experiments. This is useful for infering attributes such as mood
where human judgements are our source of ground truth. Learning is accomplished
using datasets comprising labelled mocap and video-based 3D pose estimates. These
sources of training data are combined with a simple for of domain adaptation.

To our knowledge, this is the first paper in the literature that attempted to infer
such perceptually and biologically meaningful attributesfrom 3D video-based pose es-
timates. In the future we hope to collect large datasets and explore stronger tracking
prior models trained from large collections of mocap data. We also hope to be able to
test the inference of attributes with monocular pose tracking methods. While the results
reported here are interesting in their own right, we also suggest that tasks like this pro-
vide a natural way to assess the fidelity with which people trackers estimate 3D pose.
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