Minmax and Maxmin

ISCI 330 Lecture 8

February 1, 2007

Lecture Overview

(1) Recap
(2) Maxmin and Minmax

Computing Mixed Nash Equilibria

- Guess the support
- If a player has a support of size 2 or more, he must be indifferent between these actions
- Set up an equation that expresses these constraints:
- e.g., $u_{1}(B,(p, 1-p))=u_{1}(F,(p, 1-p))$
- Solve the equation to find p.

Lecture Overview

(1) Recap

(2) Maxmin and Minmax

Max-Min Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum amount of payoff guaranteed by a maxmin strategy.
- Why would i want to play a maxmin strategy?

Max-Min Strategies

- Player i 's maxmin strategy is a strategy that maximizes i 's worst-case payoff, in the situation where all the other players (whom we denote $-i$) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum amount of payoff guaranteed by a maxmin strategy.
- Why would i want to play a maxmin strategy?
- a conservative agent maximizing worst-case payoff
- a paranoid agent who believes everyone is out to get him

Definition

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

Min-Max Strategies

- Player i 's minmax strategy in a 2-player game is a strategy that minimizes the other player $-i$'s best-case payoff.
- The minmax value of the 2-player game for player i is that maximum amount of payoff that $-i$ could achieve under i 's minmax strategy.
- Why would i want to play a minmax strategy?

Min-Max Strategies

- Player i's minmax strategy in a 2-player game is a strategy that minimizes the other player - i 's best-case payoff.
- The minmax value of the 2-player game for player i is that maximum amount of payoff that $-i$ could achieve under i 's minmax strategy.
- Why would i want to play a minmax strategy?
- to punish the other agent as much as possible

Definition

The maxmin strategy for player i is $\arg \max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$, and the maxmin value for player i is $\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{1}, s_{2}\right)$.

Definition

In a two-player game, the minmax strategy for player i is $\arg \min _{s_{i}}$ $\max _{s_{-i}} u_{-i}\left(s_{1}, s_{2}\right)$, and the minmax value for player i is $\min _{s_{i}}$ $\max _{s_{-i}} u_{-i}\left(s_{1}, s_{2}\right)$.

Minmax Theorem

Theorem (Minmax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- The maxmin value for one player is equal to the minmax value for the other player. By convention, the maxmin value for player 1 is called the value of the game.
- For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player 1 gets the value of the game).

Geometric Representation: Saddle Point

- Can you see why this picture illustrates the maxmin and minmax values?

How to find maxmin and minmax strategies

Consider maxmin strategies for player i in a 2-player game.

- Notice that i 's maxmin strategy depends only on i 's utilities
- thus changes to $-i$'s utilities do not change i 's maxmin strategy
- Consider the game where player i has the same utilities as before, but player $-i$'s utilities are replaced with the negatives of i 's utilities
- this is now a zero-sum game
- Because of the minmax theorem, we know that any Nash equilibrium strategy in this game is also a maxmin strategy
- Thus, find player i 's equilibrium strategy in the new game and we have i 's maxmin strategy in the original game
- We can use a similar approach for minmax.

