Computing Mixed Nash Equilibria

ISCI 330 Lecture 7

January 31, 2007

Lecture Overview

(1) Recap
(2) Computing Mixed Nash Equilibria
(3) Fun Game

What are solution concepts?

- Solution concept: a subset of the outcomes in the game that are somehow interesting.
- There is an implicit computational problem of finding these outcomes given a particular game.
- Depending on the concept, existence can be an issue.

Solution concepts we've seen so far:

What are solution concepts?

- Solution concept: a subset of the outcomes in the game that are somehow interesting.
- There is an implicit computational problem of finding these outcomes given a particular game.
- Depending on the concept, existence can be an issue.

Solution concepts we've seen so far:

- Pareto-optimal outcome
- Pure-strategy Nash equilibrium
- Mixed-strategy Nash equilibrium
- Other Nash variants:
- weak Nash equilibrium
- strict Nash equilibrium

Mixed Strategies

- It would be a pretty bad idea to play any deterministic strategy in matching pennies
- Idea: confuse the opponent by playing randomly
- Define a strategy s_{i} for agent i as any probability distribution over the actions A_{i}.
- pure strategy: only one action is played with positive probability
- mixed strategy: more than one action is played with positive probability
- these actions are called the support of the mixed strategy
- Let the set of all strategies for i be S_{i}
- Let the set of all strategy profiles be $S=S_{1} \times \ldots \times S_{n}$.

Utility under Mixed Strategies

- What is your payoff if all the players follow mixed strategy profile $s \in S$?
- We can't just read this number from the game matrix anymore: we won't always end up in the same cell
- Instead, use the idea of expected utility from decision theory:

$$
\begin{gathered}
u_{i}(s)=\sum_{a \in A} u_{i}(a) \operatorname{Pr}(a \mid s) \\
\operatorname{Pr}(a \mid s)=\prod_{j \in N} s_{j}\left(a_{j}\right)
\end{gathered}
$$

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize from actions to strategies.

- Best response:
- $s_{i}^{*} \in B R\left(s_{-i}\right)$ iff $\forall s_{i} \in S_{i}, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$
- Nash equilibrium:
- $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ is a Nash equilibrium iff $\forall i, s_{i} \in B R\left(s_{-i}\right)$
- Every finite game has a Nash equilibrium! [Nash, 1950]
- e.g., matching pennies: both players play heads/tails $50 \% / 50 \%$

Lecture Overview

(1) Recap
(2) Computing Mixed Nash Equilibria
(3) Fun Game

Computing Mixed Nash Equilibria: Battle of the Sexes

	B	F
B	2,1	0,0
	0,0	1,2

- It's hard in general to compute Nash equilibria, but it's easy when you can guess the support
- For BoS, let's look for an equilibrium where all actions are part of the support

Computing Mixed Nash Equilibria: Battle of the Sexes

	B	F
B	2,1	0,0
	0,0	1,2

- Let player 2 play B with p, F with $1-p$.
- If player 1 best-responds with a mixed strategy, player 2 must make him indifferent between F and B (why?)

Computing Mixed Nash Equilibria: Battle of the Sexes

	B	F
B	2,1	0,0
		0,0

- Let player 2 play B with p, F with $1-p$.
- If player 1 best-responds with a mixed strategy, player 2 must make him indifferent between F and B (why?)

$$
\begin{aligned}
u_{1}(B) & =u_{1}(F) \\
2 p+0(1-p) & =0 p+1(1-p) \\
p & =\frac{1}{3}
\end{aligned}
$$

Computing Mixed Nash Equilibria: Battle of the Sexes

	B	F
B	2,1	0,0
	0,0	1,2

- Likewise, player 1 must randomize to make player 2 indifferent.
- Why is player 1 willing to randomize?

Computing Mixed Nash Equilibria: Battle of the Sexes

	B	F
B	2,1	0,0
	0,0	1,2

- Likewise, player 1 must randomize to make player 2 indifferent.
- Why is player 1 willing to randomize?
- Let player 1 play B with q, F with $1-q$.

$$
\begin{aligned}
u_{2}(B) & =u_{2}(F) \\
q+0(1-q) & =0 q+2(1-q) \\
q & =\frac{2}{3}
\end{aligned}
$$

- Thus the mixed strategies $\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)$ are a Nash equilibrium.

Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different interpretations:

- Randomize to confuse your opponent
- consider the matching pennies example
- Players randomize when they are uncertain about the other's action
- consider battle of the sexes
- Mixed strategies are a concise description of what might happen in repeated play: count of pure strategies in the limit
- Mixed strategies describe population dynamics: 2 agents chosen from a population, all having deterministic strategies. MS is the probability of getting an agent who will play one PS or another.

Lecture Overview

(1) Recap
(2) Computing Mixed Nash Equilibria
(3) Fun Game

Fun Game!

- Play once as each player, recording the strategy you follow.

Fun Game!

	L	R
T	320,40	40,80
B	40,80	80,40

- Play once as each player, recording the strategy you follow.

Fun Game!

- Play once as each player, recording the strategy you follow.

Fun Game!

	L	R
T	80, 40; 320, 40; 44, 40	40, 80
B	40, 80	80,40

- Play once as each player, recording the strategy you follow.
- What does row player do in equilibrium of this game?

Fun Game!

	L	R
T	80,$40 ; 320,40 ; 44,40$	40,80
B	40,80	80,40

- Play once as each player, recording the strategy you follow.
- What does row player do in equilibrium of this game?
- row player randomizes 50-50 all the time
- that's what it takes to make column player indifferent

Fun Game!

	L	R
T	80, 40; 320, 40; 44, 40	40, 80
B	40, 80	80, 40

- Play once as each player, recording the strategy you follow.
- What does row player do in equilibrium of this game?
- row player randomizes $50-50$ all the time
- that's what it takes to make column player indifferent
- What happens when people play this game?

Fun Game!

	L	L
T	80,$40 ; 320,40 ; 44,40$	40,80
B	40,80	80,40

- Play once as each player, recording the strategy you follow.
- What does row player do in equilibrium of this game?
- row player randomizes 50-50 all the time
- that's what it takes to make column player indifferent
- What happens when people play this game?
- with payoff of 320 , row player goes up essentially all the time
- with payoff of 44 , row player goes down essentially all the time

