Analyzing Games

ISCI 330 Lecture 4

January 18, 2007

Analyzing Games

ISCI 330 Lecture 4, Slide 1

æ.

< 口 > < 回 > < 回 > < 回 > < 回 > <

Lecture Overview

2 Two more examples

3 Pareto Optimality

ISCI 330 Lecture 4, Slide 2

æ

回 と く ヨ と く ヨ と

Analyzing Games

Defining Games

- Finite, *n*-person game: $\langle N, A, u \rangle$:
 - $\bullet~N$ is a finite set of n players, indexed by i
 - $A=\langle A_1,\ldots,A_n\rangle$ is a tuple of action sets for each player i
 - $a \in A$ is an action profile
 - $u = \langle u_1, \dots, u_n \rangle$, a utility function for each player, where $u_i : A \mapsto \mathbb{R}$
- Writing a 2-player game as a matrix:
 - row player is player 1, column player is player 2
 - rows are actions $a \in A_1$, columns are $a' \in A_2$
 - cells are outcomes, written as a tuple of utility values for each player

同 と く ヨ と く ヨ と

Prisoner's dilemma

Prisoner's dilemma is any game

 $\begin{array}{c|c} C & D \\ \\ C & a, a & b, c \\ \\ D & c, b & d, d \end{array}$

with c > a > d > b.

< ≣⇒

A⊒ ▶ ∢ ∃

Matching Pennies

A zero-sum game: players have exactly opposed interests. One player wants to match; the other wants to mismatch.

Analyzing Games

Coordination Game

A cooperative game: players have exactly the same interests. Which side of the road should you drive on?

	Left	Right
Left	1	0
Right	0	1

Lecture Overview

æ

回 と く ヨ と く ヨ と

Analyzing Games

Games of Cooperation

Players have exactly the same interests.

• no conflict: all players want the same things

•
$$\forall a \in A, \forall i, j, u_i(a) = u_j(a)$$

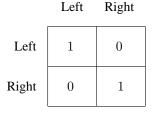
- we often write such games with a single payoff per cell
- why are such games "noncooperative"?

Coordination Game

Which side of the road should you drive on?

Left Right

Left	1	0
Right	0	1

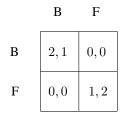

Analyzing Games

ISCI 330 Lecture 4, Slide 9

回 と く ヨ と く ヨ と

Coordination Game

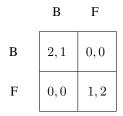
Which side of the road should you drive on?



Play this game with someone near you, repeating five times.

< E.

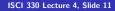
General Games: Battle of the Sexes


The most interesting games combine elements of cooperation *and* competition.

< ≣⇒

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation *and* competition.


Play this game with someone near you, repeating five times.

Lecture Overview

2 Two more examples

回 と く ヨ と く ヨ と

Analyzing Games

Analyzing Games

- We've defined some canonical games, and thought about how to play them. Now let's examine the games from the outside
- From the point of view of an outside observer, can some outcomes of a game be said to be better than others?

Analyzing Games

- We've defined some canonical games, and thought about how to play them. Now let's examine the games from the outside
- From the point of view of an outside observer, can some outcomes of a game be said to be better than others?
 - we have no way of saying that one agent's interests are more important than another's
 - intuition: imagine trying to find the revenue-maximizing outcome when you don't know what currency has been used to express each agent's payoff
- Are there situations where we can still prefer one outcome to another?

▲ 理 ▶ | ▲ 理 ▶ …

- Idea: sometimes, one outcome o is at least as good for every agent as another outcome o', and there is some agent who strictly prefers o to o'
 - in this case, it seems reasonable to say that o is better than o'
 - we say that *o* Pareto-dominates *o*'.

- Idea: sometimes, one outcome o is at least as good for every agent as another outcome o', and there is some agent who strictly prefers o to o'
 - in this case, it seems reasonable to say that o is better than o'
 - we say that *o* Pareto-dominates *o*'.

• An outcome o^* is Pareto-optimal if there is no other outcome that Pareto-dominates it.

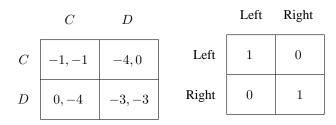
(3)

- Idea: sometimes, one outcome o is at least as good for every agent as another outcome o', and there is some agent who strictly prefers o to o'
 - in this case, it seems reasonable to say that o is better than o'
 - we say that *o* Pareto-dominates *o*'.

- An outcome o^* is Pareto-optimal if there is no other outcome that Pareto-dominates it.
 - can a game have more than one Pareto-optimal outcome?

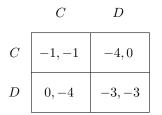
- Idea: sometimes, one outcome o is at least as good for every agent as another outcome o', and there is some agent who strictly prefers o to o'
 - in this case, it seems reasonable to say that o is better than o'
 - we say that *o* Pareto-dominates *o*'.

- An outcome o^* is Pareto-optimal if there is no other outcome that Pareto-dominates it.
 - can a game have more than one Pareto-optimal outcome?
 - does every game have at least one Pareto-optimal outcome?


A 35 M 4 35 M

C	-1, -1	-4,0
D	0, -4	-3, -3

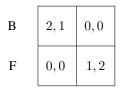
ISCI 330 Lecture 4, Slide 14


イロト イヨト イヨト イヨト

ISCI 330 Lecture 4, Slide 14

< ≣⇒

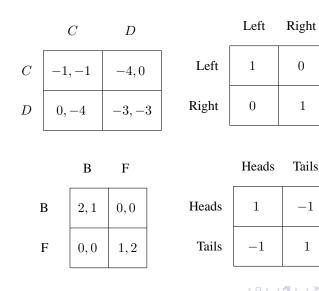
A ■



Left	1	0
Right	0	1

Left

Right


B F

æ

< ≣⇒

A ■

ISCI 330 Lecture 4, Slide 14

æ

< ≣⇒