Domination

ISCI 330 Lecture 10

February 8, 2007

ISCI 330 Lecture 10, Slide 1

æ

・ロン ・団 と ・ ヨ と ・ ヨ と

Lecture Overview

æ

Domination

• Let s_i and s'_i be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players

Definition

 s_i strictly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

Definition

 s_i weakly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ and $\exists s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

Definition

 s_i very weakly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$

・回 ・ ・ ヨ ・ ・ ヨ ・

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.

- E + - E +

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.
- Consider Prisoner's Dilemma again
 - not only is the only equilibrium the only non-Pareto-optimal outcome, but it's also an equilibrium in strictly dominant strategies!

• • E • • E •

Dominated strategies

 No equilibrium can involve a strictly dominated strategy (why?)

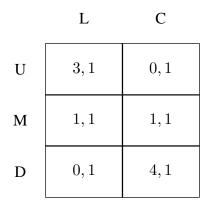
-∢ ≣⇒

A ►

Dominated strategies

- No equilibrium can involve a strictly dominated strategy (why?)
 - Thus we can remove it, and end up with a strategically equivalent game
 - This might allow us to remove another strategy that wasn't dominated before
 - Running this process to termination is called iterated removal of strictly dominated strategies.
- If we remove weakly dominated strategies, we might miss an equilibrium (why?)
 - However, if all we want is to find some equilibrium, we can use this procedure—it never adds equilibria, so it must leave at least one
 - Also, it can make it easier to find an equilibrium by removing more strategies.

(《圖》 《문》 《문》 - 문


Iterated domination example

	L	С	R
U	3, 1	0, 1	0,0
М	1, 1	1, 1	5, 0
D	0, 1	4, 1	0,0

æ

・ロン ・四と ・日と ・日と

Iterated domination example

æ

< ≣⇒

< 🗇 🕨 <

Iterated domination example

æ

< ∃→

Extensive Form Games

ISCI 330 Lecture 10

February 8, 2007

Extensive Form Games

ISCI 330 Lecture 10, Slide 1

æ

イロト イヨト イヨト イヨト

Lecture Overview

Perfect-Information Extensive-Form Games

Subgame Perfection

Extensive Form Games

ISCI 330 Lecture 10, Slide 2

æ

- 4 回 2 4 三 2 4 三 2 4

Introduction

The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players

< ∃⇒

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

Represents a finite sequential game as a rooted tree

- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'

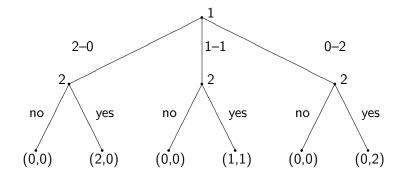
- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'
- Each branch from this internal node represents a different choice for that player

- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'
- Each branch from this internal node represents a different choice for that player
- Each terminal node represents a possible final outcome of the game

- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'
- Each branch from this internal node represents a different choice for that player
- Each terminal node represents a possible final outcome of the game
- Usually written with the basal root on top

- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'
- Each branch from this internal node represents a different choice for that player
- Each terminal node represents a possible final outcome of the game
- Usually written with the basal root on top
- Parts of the tree are labeled as follows:
 - Internal nodes (including the root) are labeled with player identifiers

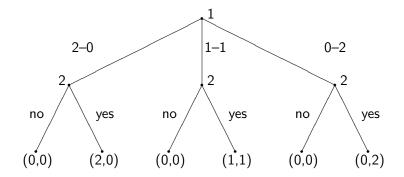
(3)


- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'
- Each branch from this internal node represents a different choice for that player
- Each terminal node represents a possible final outcome of the game
- Usually written with the basal root on top
- Parts of the tree are labeled as follows:
 - Internal nodes (including the root) are labeled with player identifiers
 - Branches are labeled with player choices

A B M
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Represents a finite sequential game as a rooted tree
- Each internal node represents a particular player's 'turn'
- Each branch from this internal node represents a different choice for that player
- Each terminal node represents a possible final outcome of the game
- Usually written with the basal root on top
- Parts of the tree are labeled as follows:
 - Internal nodes (including the root) are labeled with player identifiers
 - Branches are labeled with player choices
 - Terminal nodes are labeled with utility outcomes

• • = • • = •


Example: the sharing game

A ■

æ

Example: the sharing game

Get with a partner and decide on a simple sequential game (e.g. tic-tac-toe) and represent it in extended form