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Domination

Domination

Let si and s′i be two strategies for player i, and let S−i be is
the set of all possible strategy profiles for the other players

Definition

si strictly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition

si weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i) and
∃s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Definition

si very weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i)
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Domination

Equilibria and dominance

If one strategy dominates all others, we say it is dominant.

A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

An equilibrium in strictly dominant strategies must be unique.

Consider Prisoner’s Dilemma again

not only is the only equilibrium the only non-Pareto-optimal
outcome, but it’s also an equilibrium in strictly dominant
strategies!
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Domination

Dominated strategies

No equilibrium can involve a strictly dominated strategy
(why?)

Thus we can remove it, and end up with a strategically
equivalent game
This might allow us to remove another strategy that wasn’t
dominated before
Running this process to termination is called iterated removal
of strictly dominated strategies.

If we remove weakly dominated strategies, we might miss an
equilibrium (why?)

However, if all we want is to find some equilibrium, we can use
this procedure—it never adds equilibria, so it must leave at
least one
Also, it can make it easier to find an equilibrium by removing
more strategies.
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Iterated domination example

3.3 Solution concepts for normal-form games 73

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

Figure 3.12 A game with dominated strategies.

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

Figure 3.13 The game from Figure 3.12 after removing the dominated strategyR.

computing the Nash equilibria in the original3×3 game, we can now compute them in
this2× 2 game, applying the technique described earlier. In some cases, the procedure
ends with a single cell; this is the case, for example, with the Prisoner’s Dilemma game.
In this case we say that the game issolvableby iterated elimination.

Clearly, in any finite game, iterated elimination ends aftera finite number of iter-
ations. One might worry that, in general, the order of elimination might affect the
final outcome. It turns out that this elimination order does not matter when we remove
strictly dominated strategies (this is called aChurch-Rosserproperty). However, the Church-Rosser

propertyelimination order can make a difference to the final reduced game if we remove weakly
or very weakly dominated strategies.

Which flavor of domination should we concern ourselves with? In fact, each fla-
vor has advantages and disadvantages, which is why we present all of them here. Strict
domination leads to better-behaved iterated elimination:it yields a reduced game which
is independent of the elimination order, and iterated elimination is more computation-
ally manageable (this and other computational issues regarding domination are dis-

Multi Agent Systems, draft of January 26, 2007
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Iterated domination example

74 3 Introduction to Non-Cooperative Game Theory: Games in Normal Form

L C

U 3, 1 0, 1

D 0, 1 4, 1

Figure 3.14 The game from Figure 3.13 after removing the dominated strategyM .

cussed in Section 4.7.3). There is also a further related advantage which we will defer
to Section 3.3.4. Weak domination can yield smaller reducedgames, but under iterated
elimination the reduced game can depend on the elimination order. Very weak domi-
nation can yield even smaller reduced games, but again thesereduced games depend
on elimination order. Furthermore, very weak domination does not impose a strict or-
der on strategies: when two strategies are equivalent, eachvery weakly dominates the
other. For this reason, this last form of domination is generally considered the least
important by game theorists.

3.3.4 Rationalizability

A strategy isrationalizableif a perfectly rational player could justifiably play it againstrationalizable
one or more perfectly rational opponents. Informally, a strategy profile for playeri
is rationalizable if it is a best response to some beliefs that i could have about the
strategies that the other players will take. The wrinkle, however, is thati cannot have
arbitrary beliefs about the other players’ actions—his beliefs must take into account his
knowledge oftheir rationality, which incorporates their knowledge ofhis rationality,
their knowledge of his knowledge of their rationality, and so on in an infinite regress. A
rationalizable strategy profile is a strategy profile which consists only of rationalizable
strategies.

For example, in the Matching Pennies game given in Figure 3.6, the pure strategy
headsis rationalizable for the row player. First, the strategyheadsis a best response
to the pure strategyheadsby the column player. Second, believing that the column
player would also playheadsis consistent with the column player’s rationality: the
column player could believe that the row player would playtails, to which the column
player’s best response isheads. It would be rational for the column player to believe
that the row player would playtails because the column player could believe that the
row player believed that the column player would playtails, to which tails is a best
response. Arguing in the same way, we can make our way up the chain of beliefs.

However, not every strategy can be justified in this way. For example, considering
the Prisoner’s Dilemma game given in Figure 3.2, the strategy C is not rationalizable
for the row player, becauseC is not a best response to any strategy that the column
player could play. Similarly, consider the game from Figure3.12. M is not a ratio-

c©Shoham and Leyton-Brown, 2006
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Lecture Overview

Perfect-Information Extensive-Form Games

Subgame Perfection
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Perfect-Information Extensive-Form Games Subgame Perfection

Introduction

I The normal form game representation does not incorporate
any notion of sequence, or time, of the actions of the players

I The extensive form is an alternative representation that makes
the temporal structure explicit.

I Two variants:
I perfect information extensive-form games
I imperfect-information extensive-form games
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Perfect-Information Extensive-Form Games Subgame Perfection

Perfect-Information Extensive Form Representation

I Represents a finite sequential game as a rooted tree

I Each internal node represents a particular player’s ’turn’

I Each branch from this internal node represents a different
choice for that player

I Each terminal node represents a possible final outcome of the
game

I Usually written with the basal root on top
I Parts of the tree are labeled as follows:

I Internal nodes (including the root) are labeled with player
identifiers

I Branches are labeled with player choices
I Terminal nodes are labeled with utility outcomes
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Example: the sharing game
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(0,2)(0,0)(1,1)(0,0)(2,0)(0,0)

Get with a partner and decide on a simple sequential game (e.g.
tic-tac-toe) and represent it in extended form
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