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Behavioral Game Theory

• Many of game theory’s recommendations are very
counter-intuitive.

• Do people actually follow them?

• No. A large body of experiments demonstrates otherwise.

• Behavioral game theory: Aims to model actual human
behavior in games.
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Fun Game: Traveler’s Dilemma
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• Two players pick a number (2-100) simultaneously.

• If they pick the same number, that is their payoff.

• If they pick different numbers:
• Lower player gets lower number, plus bonus of 2.
• Higher player gets lower number, minus penalty of 2.
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• Two players pick a number (2-100) simultaneously.

• If they pick the same number, that is their payoff.

• If they pick different numbers:
• Lower player gets lower number, plus bonus of 2.
• Higher player gets lower number, minus penalty of 2.

• Give this game a try. Play any opponent only once.
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• Two players pick a number (2-100) simultaneously.

• If they pick the same number, that is their payoff.

• If they pick different numbers:
• Lower player gets lower number, plus bonus of 30.
• Higher player gets lower number, minus penalty of 30.

• Now play a different opponent with a larger penalty.
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• Two players pick a number (2-100) simultaneously.

• If they pick the same number, that is their payoff.

• If they pick different numbers:
• Lower player gets lower number, plus bonus of 30.
• Higher player gets lower number, minus penalty of 30.

• Traveler’s Dilemma has a unique Nash equilibrium.
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Comparing Behavioral Models
[Wright & Leyton-Brown 2010]
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• Many behavioral models have been proposed.
• First study to compare prediction performance of several at
once.

• One model performed clearly better than the others.
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Two main ideas

..1 Quantal utility maximization instead of utility maximization.

..2 Iterative reasoning instead of equilibrium.
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Iterative reasoning
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Level-0
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• Level-0 agents’ actions influence the behavior of every other
level.

• Predictions of iterative models can change dramatically if
level-0 predictions change.

• It is unlikely that anyone actually picks actions uniformly.
• Not knowing expected value is different from knowing nothing.
• Level-0 agents could use all sorts of heuristics.

• Can we do a better job of predicting level-0 actions?
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Level-0 meta-model
[Wright & Leyton-Brown, 2014 (submitted)]

• Define a “meta-model” that predicts a distribution of level-0
actions.

• Based on features of the actions that don’t require beliefs
about the other agents’ actions.

• Use an existing iterative model (quantal cognitive hierarchy)
on top of the improved level-0 prediction to make predictions.
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Features

Five binary features:

..1 Minmin Unfairness

..2 Maxmax payoff (“Optimistic”)

..3 Maxmin payoff (“Pessimistic”)

..4 Minimax regret

..5 Efficiency (Total payoffs)
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Linear model

For each action, compute weighted sum of informative features,
plus a noise weight:

w0 +
∑
f ∈F

wf I (f )f (ai )

(An action is informative if it can distinguish at least one pair of
actions.)
Predict each action w.p. proportional to its weighted sum.
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Example

A B C
X 100, 20 10, 67 30, 40
Y 40, 35 50, 49 90, 70
Z 41, 21 42, 22 40, 23

• Minimax regret is not informative (all have max-regret 60)

• 50, 49 is the fairest outcome, so Y is minmin unfairness.

• Y and Z have min payoff 40 (vs. 10 for X )

• Y leads to the best total utility (90 + 70 = 160)

• X has the highest best-case utility (100)

Action X ’s weight: w0 + wmaxmax

Action Y ’s weight: w0 + wminmin + wtotal + wfairness

Action Z ’s weight: w0 + wminmin

11
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Data & Parameters

Name Source Games n

SW94 [Stahl and Wilson, 1994] 10 4005
SW95 [Stahl and Wilson, 1995] 12 576
CGCB98 [Costa-Gomes et al., 1998] 18 15662
GH01 [Goeree and Holt, 2001] 10 500
CVH03 [Cooper and Van Huyck, 2003] 8 2992
HSW01 [Haruvy et al., 2001] 15 869
HS07 [Haruvy and Stahl, 2007] 20 2940
SH08 [Stahl and Haruvy, 2008] 18 1288

Combo8 400 samples from each 111 3200

• Set parameters (weights, level frequencies, etc.) and evaluated
performance using cross validation on combined dataset:

..1 Divide data into 10 equal-sized random folds

..2 At step t: Choose maximum-likelihood parameters for dataset
minus fold t (training folds) and compute likelihood of fitted
model on fold t (test folds).

• Report sum of likelihoods of test folds.
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Performance results
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Three iterative models:

..1 Quantal Cognitive Hierarchy

..2 Level-k

..3 Cognitive Hierarchy

Three level-0 meta-models:

..1 Uniform L0

..2 Ordered Binary

..3 Weighted Linear
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Parameter analysis

• Maximum likelihood fits do not tell us how important or
identified each feature is.

• The models produce probabilistic predictions.

• So we can compute a posterior distribution over parameters:

Pr(. . . ,w0,wfairness,wmaxmax, . . . | D)

• Distribution tells us how important and/or identified
parameters are.
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Parameter analysis: Weights
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• Fairness is by far the highest weighted feature.

• All the features seem reasonably well identified.
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Parameter analysis: Levels
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• Weighted linear =⇒ lower variance estimates
• ∼Half the population is level-0!
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Conclusions

• Weighted linear meta-model for level-0 agents dramatically
improved the performance of all three iterative models.

• Almost erases the difference between the models themselves.

• Strong evidence for the existence of level-0 agents.
• For any meta-model, including uniform!
• Contrary to conventional wisdom.
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Thanks!

• Weighted linear meta-model for level-0 agents dramatically
improved the performance of all three iterative models.

• Almost erases the difference between the models themselves.

• Strong evidence for the existence of level-0 agents.
• For any meta-model, including uniform!
• Contrary to conventional wisdom.
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