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Behavioral Game Theory

e Many of game theory’'s recommendations are very
counter-intuitive.

e Do people actually follow them?
e No. A large body of experiments demonstrates otherwise.

e Behavioral game theory: Aims to model actual human
behavior in games.
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o Lower player gets lower number, plus bonus of 2.
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Fun Game: Traveler's Dilemma
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Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.
If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

Give this game a try. Play any opponent only once.

Conclusions
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Fun Game: Traveler's Dilemma
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Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.
If they pick different numbers:

e Lower player gets lower number, plus bonus of 30.
e Higher player gets lower number, minus penalty of 30.

Now play a different opponent with a larger penalty.

Conclusions
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Two players pick a number (2-100) simultaneously.
If they pick the same number, that is their payoff.
If they pick different numbers:

e Lower player gets lower number, plus bonus of 30.
e Higher player gets lower number, minus penalty of 30.

Traveler's Dilemma has a unique Nash equilibrium.
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e Two players pick a number (2-100) simultaneously.
o If they pick the same number, that is their payoff.
o If they pick different numbers:

e Lower player gets lower number, plus bonus of 30.

e Higher player gets lower number, minus penalty of 30.
e Traveler's Dilemma has a unique Nash equilibrium.



Overview Comparing models Iterative models Meta-models Evaluation Parameter analysis

Fun Game: Traveler's Dilemma

98 +2 =100

@@@”'

98 -2 =96

Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.
If they pick different numbers:

e Lower player gets lower number, plus bonus of 30.
e Higher player gets lower number, minus penalty of 30.

Traveler's Dilemma has a unique Nash equilibrium.

Conclusions



Overview Comparing models Iterative models Meta-models Evaluation Parameter analysis

Fun Game: Traveler’'s Dilemma
2
é@@”'
2

e Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.
If they pick different numbers:

e Lower player gets lower number, plus bonus of 30.
e Higher player gets lower number, minus penalty of 30.

Traveler's Dilemma has a unique Nash equilibrium.
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Comparing Behavioral Models
[Wright & Leyton-Brown 2010]
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e Many behavioral models have been proposed.
e First study to compare prediction performance of several at
once.
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Comparing Behavioral Models
[Wright & Leyton-Brown 2010]
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e Many behavioral models have been proposed.

e First study to compare prediction performance of several at
once.

e One model performed clearly better than the others.
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Level-0

e Level-0 agents’ actions influence the behavior of every other
level.

e Predictions of iterative models can change dramatically if
level-0 predictions change.
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Level-0 agents’ actions influence the behavior of every other
level.
Predictions of iterative models can change dramatically if
level-0 predictions change.
It is unlikely that anyone actually picks actions uniformly.
e Not knowing expected value is different from knowing nothing.
o Level-0 agents could use all sorts of heuristics.

Can we do a better job of predicting level-0 actions?
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Level-0 meta-model
[Wright & Leyton-Brown, 2014 (submitted)]

e Define a “meta-model” that predicts a distribution of level-0
actions.
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Level-0 meta-model
[Wright & Leyton-Brown, 2014 (submitted)]

e Define a “meta-model” that predicts a distribution of level-0
actions.
e Based on features of the actions that don’t require beliefs
about the other agents’ actions.

e Use an existing iterative model (quantal cognitive hierarchy)
on top of the improved level-0 prediction to make predictions.
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Features

Five binary features:
® Minmin Unfairness
® Maxmax payoff (“Optimistic”)
©® Maxmin payoff (“Pessimistic”)
O Minimax regret
@ Efficiency (Total payoffs)
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plus a noise weight:
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Linear model

For each action, compute weighted sum of informative features,
plus a noise weight:

wo + > wel(F)f(a;)

feF

(An action is informative if it can distinguish at least one pair of
actions.)
Predict each action w.p. proportional to its weighted sum.

10
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Example

A B C
X [100,20 | 10,67 [ 30,40
Y | 40,35 | 50,49 | 90,70
Z | 41,21 | 42,22 | 40,23

e Minimax regret is not informative (all have max-regret 60)
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Example

A B C
X [100,20 | 10,67 [ 30,40
Y | 40,35 | 50,49 | 90,70
Z | 41,21 | 42,22 | 40,23

e Minimax regret is not informative (all have max-regret 60)

50,49 is the fairest outcome, so Y is minmin unfairness.
Y and Z have min payoff 40 (vs. 10 for X)

Y leads to the best total utility (90 4+ 70 = 160)

e X has the highest best-case utility (100)

Action X's weight: wg + Wmaxmax
Action Y's weight: wo + Wminmin + Wiotal T Wairness
Action Z's weight: wo + Wminmin

11
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Data & Parameters

Name Source Games n
SWo4 [Stahl and Wilson, 1994] 10 4005
SW95 [Stahl and Wilson, 1995] 12 576
CGCB98 [Costa-Gomes et al., 1998] 18 15662
GHO1 [Goeree and Holt, 2001] 10 500
CVHO03 [Cooper and Van Huyck, 2003] 8 2992
HSWo01 [Haruvy et al., 2001] 15 869
HS07 [Haruvy and Stahl, 2007] 20 2940
SHOS8 [Stahl and Haruvy, 2008] 18 1288
CoMBO8 400 samples from each 111 3200

e Set parameters (weights, level frequencies, etc.) and evaluated
performance using cross validation on combined dataset:
@ Divide data into 10 equal-sized random folds
@® At step t: Choose maximum-likelihood parameters for dataset
minus fold t (training folds) and compute likelihood of fitted
model on fold t (test folds).

e Report sum of likelihoods of test folds.

12
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Performance results
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e Maximum likelihood fits do not tell us how important or
identified each feature is.
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Parameter analysis

Maximum likelihood fits do not tell us how important or
identified each feature is.

The models produce probabilistic predictions.

So we can compute a posterior distribution over parameters:

Pr(- -+ » W0, Wrairnesss Wmaxmax; - - - | D)

Distribution tells us how important and/or identified
parameters are.
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Parameter analysis: Weights

fairness

maxmax
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feature weight

e Fairness is by far the highest weighted feature.

o All the features seem reasonably well identified.

Conclusions
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Parameter analysis: Levels

Meta-models

Evaluation

Parameter analysis
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e Weighted linear = lower variance estimates
e ~Half the population is level-0!

Conclusions
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Conclusions

e Weighted linear meta-model for level-0 agents dramatically
improved the performance of all three iterative models.

e Almost erases the difference between the models themselves.

e Strong evidence for the existence of level-0 agents.

e For any meta-model, including uniform!
e Contrary to conventional wisdom.
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Thanks!

e Weighted linear meta-model for level-0 agents dramatically
improved the performance of all three iterative models.

e Almost erases the difference between the models themselves.

e Strong evidence for the existence of level-0 agents.

e For any meta-model, including uniform!
e Contrary to conventional wisdom.

18



Comparing models Iterative models Meta-models Evaluation Parameter analysis Conclusions

Over[b;fbliogra phy

[4 Cooper, D. and Van Huyck, J. (2003).
Evidence on the equivalence of the strategic and extensive
form representation of games.
JET, 110(2):290-308.

[4 Costa-Gomes, M., Crawford, V., and Broseta, B. (1998).
Cogpnition and behavior in normal-form games: an
experimental study.

Discussion paper 98-22, UCSD.

[ Goeree, J. K. and Holt, C. A. (2001).
Ten little treasures of game theory and ten intuitive

contradictions.
AER, 91(5):1402-1422.

[4 Haruvy, E. and Stahl, D. (2007).
Equilibrium selection and bounded rationality in symmetric
normal-form games.
JEBO, 62(1):98-119.



Overview

B

Comparing models Iterative models Meta-models Evaluation Parameter analysis Conclusions

Haruvy, E., Stahl, D., and Wilson, P. (2001).

Modeling and testing for heterogeneity in observed strategic
behavior.

Review of Economics and Statistics, 83(1):146-157.

Rogers, B. W., Palfrey, T. R., and Camerer, C. F. (2009).
Heterogeneous quantal response equilibrium and cognitive
hierarchies.

JET, 144(4):1440-1467.

Stahl, D. and Haruvy, E. (2008).

Level-n bounded rationality and dominated strategies in
normal-form games.

JEBO, 66(2):226-232.

Stahl, D. and Wilson, P. (1994).
Experimental evidence on players’ models of other players.
JEBO, 25(3):309-327.

Stahl, D. and Wilson, P. (1995).

18



Overview

Comparing models Iterative models Meta-
On piayers models of other p
evidence.

GEB, 10(1):218-254.

odels
aners:

T

uation Para,

eory an

eter analysis Con

experimenta

Tlusions

18



	Comparing models
	Iterative models
	Meta-models
	Evaluation
	Parameter analysis

