Repeated Games

Week 5

Repeated Games

▶ ≣ ∽ ९ (Week 5, Slide 1

< □ > < □ > < □ > < □ > < □ > .

Course Logistics

- Midterm: Feb 26
- Project Outline Working Session: Feb 28
- I'm away next week; Bayesian games
- Quizzes starting next week.

-∢ ≣ ≯

Repeated Games

- Finally, we get to repeat our games!
- Let's play 10 repetitions, aiming to maximize total payoff:
 - Battle of the sexes
 - Prisoner's dilemma
 - Rock-Paper-Scissors

- ∢ ≣ ▶

Repeated Games

- Finally, we get to repeat our games!
- Let's play 10 repetitions, aiming to maximize total payoff:
 - Battle of the sexes
 - Prisoner's dilemma
 - Rock-Paper-Scissors
- Now let's do it again, 1/4 probability of stopping after every round (2 coin flips both come up heads)

Repeated Game Concepts

• Can a finitely-repeated game be defined as an imperfect-information extensive form game? How?

★ 문 → ★ 문 →

Repeated Game Concepts

- Can a finitely-repeated game be defined as an imperfect-information extensive form game? How?
- Does a finitely-repeated game have an induced normal form?

Repeated Game Concepts

- Can a finitely-repeated game be defined as an imperfect-information extensive form game? How?
- Does a finitely-repeated game have an induced normal form?
- What can we say about the equilibria of these games?

• Define limit of the means (average) reward

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の

- Define limit of the means (average) reward
- Define discounted reward

★ 문 → ★ 문 →

- Define limit of the means (average) reward
- Define discounted reward
- How can we interpret discounted reward?
- Can an infinitely-repeated game be defined as an imperfect-information extensive form game? How?

- Define limit of the means (average) reward
- Define discounted reward
- How can we interpret discounted reward?
- Can an infinitely-repeated game be defined as an imperfect-information extensive form game? How?
- Does an infinitely-repeated game have an induced normal form?

- Define limit of the means (average) reward
- Define discounted reward
- How can we interpret discounted reward?
- Can an infinitely-repeated game be defined as an imperfect-information extensive form game? How?
- Does an infinitely-repeated game have an induced normal form?
- What is a pure strategy in an infinitely-repeated game?

Equilibria of infinitely repeated games

• What does the folk theorem say intuitively?

- ▲ 문 ▶ - ▲ 문

Equilibria of infinitely repeated games

- What does the folk theorem say intuitively?
- How many would find it useful to go through the proof together?

Lecture Overview

2 Games played by automata

<<u>●● > < 部 > < き > くき > き ~ うへ(</u> Week 5, Slide 7

Definitions

- Consider any *n*-player game G = (N, A, u) and any payoff vector $r = (r_1, r_2, \dots, r_n)$.
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i).$
 - i's minmax value: the amount of utility i can get when -i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i \ge v_i$.

Definition

A payoff profile r is feasible if there exist rational, non-negative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha u_i(a)$, with $\sum_{a \in A} \alpha_a = 1$.

• a payoff profile is feasible if it is a convex, rational combination of the outcomes in G.

Repeated Games

Folk Theorem

Theorem (Folk Theorem)

Consider any *n*-player game G and any payoff vector (r_1, r_2, \ldots, r_n) .

- If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.
- If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.

Folk Theorem (Part 1)

$\mathsf{Payoff} \text{ in Nash} \to \mathsf{enforceable}$

Part 1: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the equilibrium strategy of other players given the current history h. By definition of a minmax strategy, player i will receive a payoff of at least v_i in every stage game if he adopts this strategy, and so i's average reward is also at least v_i . Thus i cannot receive the payoff $r_i < v_i$ in any Nash equilibrium.

Folk Theorem (Part 2)

Feasible and enforceable \rightarrow Nash

Part 2: Since r is a feasible payoff profile, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_a}{\gamma} \right) u_i(a)$, where β_a and γ are non-negative integers.¹ Since the combination was convex, we have $\gamma = \sum_{a \in A} \beta_a$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_a times. Let (a^t) be such a sequence of outcomes. Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t. However, if there was a period t' in which some player $j \neq i$ deviated, then s_i will play $(p_{-i})_i$, where (p_{-i}) is a solution to the minimization problem in the definition of v_i .

¹Recall that α_a were required to be rational. So we can take γ to be their common denominator.

Folk Theorem (Part 2)

$\mathsf{Feasible} \text{ and enforceable} \to \mathsf{Nash}$

First observe that if everybody plays according to s_i , then, by construction, player *i* receives average payoff of r_i (look at averages over periods of length γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody plays according to s_i , and player *j* deviates at some point. Then, forever after, player *j* will receive his min max payoff $v_j \leq r_j$, rendering the deviation unprofitable.

Lecture Overview

Repeated Games

Week 5, Slide 12

▶ ★ 문 ▶ ★ 문

Games played by automata

- One strategy for repeated games is to encode strategies as finite automata?
- What strategies work well? Let's play against each other, and against other students in the Coursera class.
- http://gametheory.cs.ubc.ca