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What is very weak domination?
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How does iterated elimination of dominated strategies work?
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Fun Game: Traveler’s Dilemma

2 3 4 96 97 98 99 100
. . .

100

100

96 + 2 = 98

96− 2 = 94 100

100

99− 2 = 97

99 + 2 = 101

98 + 2 = 100

98− 2 = 96

2

2

Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.

If they pick different numbers:

Lower player gets lower number, plus bonus of 2.
Higher player gets lower number, minus penalty of 2.

Give this game a try. Play any opponent only once.
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Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.

If they pick different numbers:

Lower player gets lower number, plus bonus of 2.
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Now play with bonus/penalty of 50.
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Fun Game: Traveler’s Dilemma

2 3 4 96 97 98 99
. . .
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96− 2 = 94 100
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2
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Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.

If they pick different numbers:

Lower player gets lower number, plus bonus of 2.
Higher player gets lower number, minus penalty of 2.

What is the Nash equilibrium?
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Domination

If no pure strategy is dominated, can any mixed strategy be
dominated? Why (not)?

If no pure strategy dominates another strategy, can any mixed
strategy dominate another strategy? Why (not)?

Does iterated removal preserve Nash equilibria? (All? Some?)

Does the order of removal matter?
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Rationalizability

Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

assumes opponent is rational
assumes opponent knows that you and the others are rational
...

Examples

is heads rationalizable in matching pennies?

is cooperate rationalizable in prisoner’s dilemma?

Will there always exist a rationalizable strategy?

Yes, equilibrium strategies are always rationalizable.

Furthermore, in two-player games, rationalizable ⇔ survives
iterated removal of strictly dominated strategies.
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Correlated Equilibrium

What’s the main idea here?
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Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N,A, u), a correlated equilibrium is
a tuple (v, π, σ), where v is a tuple of random variables
v = (v1, . . . , vn) with respective domains D = (D1, . . . , Dn), π is
a joint distribution over v, σ = (σ1, . . . , σn) is a vector of
mappings σi : Di 7→ Ai, and for each agent i and every mapping
σ′i : Di 7→ Ai it is the case that∑

d∈D
π(d)ui (σ1(d1), . . . , σi(di), . . . , σn(dn))

≥
∑
d∈D

π(d)ui
(
σ1(d1), . . . , σ

′
i(di), . . . , σn(dn)

)
.
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Existence

Theorem

For every Nash equilibrium σ∗ there exists a corresponding
correlated equilibrium σ.

This is easy to show:

let Di = Ai

let π(d) =
∏

i∈N σ∗i (di)
σi maps each di to the corresponding ai.

Thus, correlated equilibria always exist
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Remarks

Not every correlated equilibrium is equivalent to a Nash
equilibrium

thus, correlated equilibrium is a weaker notion than Nash

Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

start with the Nash equilibria (each of which is a CE)
introduce a second randomizing device that selects which CE
the agents will play
regardless of the probabilities, no agent has incentive to deviate
the probabilities can be adjusted to achieve any convex
combination of the equilibrium payoffs
the randomizing devices can be combined
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Computing CE

∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|ai∈a

p(a)ui(a
′
i, a−i) ∀i ∈ N, ∀ai, a′i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

variables: p(a); constants: ui(a)

we could find the social-welfare maximizing CE by adding an
objective function

maximize:
∑
a∈A

p(a)
∑
i∈N

ui(a).
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Why are CE easier to compute than NE?

∑
a∈A|ai∈a

p(a)ui(a) ≥
∑

a∈A|a′
i∈a

p(a)ui(a
′
i, a−i) ∀i ∈ N, ∀ai, a′i ∈ Ai

p(a) ≥ 0 ∀a ∈ A∑
a∈A

p(a) = 1

intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

To change this program so that it finds NE, the first constraint
would be∑

a∈A
ui(a)

∏
j∈N

pj(aj) ≥
∑
a∈A

ui(a
′
i, a−i)

∏
j∈N\{i}

pj(aj) ∀i ∈ N, ∀a′i ∈ Ai.

This is a nonlinear constraint!
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Computational Problems in Domination

Identifying strategies dominated by a pure strategy

Identifying strategies dominated by a mixed strategy

Identifying strategies that survive iterated elimination

Asking whether a strategy survives iterated elimination under
all elimination orderings

We’ll assume that i’s utility function is strictly positive
everywhere (why is this OK?)
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Is si strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than si for
any pure strategy profile of the others.

for all pure strategies ai ∈ Ai for player i where ai 6= si do
dom← true
for all pure strategy profiles a−i ∈ A−i for the players other than i
do

if ui(si, a−i) ≥ ui(ai, a−i) then
dom← false
break

end if
end for
if dom = true then return true

end for
return false

What is the complexity of this procedure?

Why don’t we have to check mixed strategies of −i?
Minor changes needed to test for weak, very weak dominance.
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Constraints for determining whether si is strictly
dominated by any mixed strategy

∑
j∈Ai

pjui(aj , a−i) > ui(si, a−i) ∀a−i ∈ A−i

pj ≥ 0 ∀j ∈ Ai∑
j∈Ai

pj = 1

What’s wrong with this program?

strict inequality in first constraint: we don’t have an LP
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LP for determining whether si is strictly dominated by any
mixed strategy

minimize
∑
j∈Ai

pj

subject to
∑
j∈Ai

pjui(aj , a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i

pj ≥ 0 ∀j ∈ Ai

This is clearly an LP. Why is it a solution to our problem?

if a solution exists with
∑

j pj < 1 then we can add 1−
∑

j pj
to some pk and we’ll have a dominating mixed strategy (since
utility was assumed to be positive everywhere)

Our original approach works for very weak domination
For weak domination we can use that program with a different
objective function trick.

Game Theory Week 3 Kevin Leyton-Brown , Slide 20



Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination

LP for determining whether si is strictly dominated by any
mixed strategy

minimize
∑
j∈Ai

pj

subject to
∑
j∈Ai

pjui(aj , a−i) ≥ ui(si, a−i) ∀a−i ∈ A−i

pj ≥ 0 ∀j ∈ Ai

This is clearly an LP. Why is it a solution to our problem?
if a solution exists with

∑
j pj < 1 then we can add 1−

∑
j pj

to some pk and we’ll have a dominating mixed strategy (since
utility was assumed to be positive everywhere)

Our original approach works for very weak domination
For weak domination we can use that program with a different
objective function trick.

Game Theory Week 3 Kevin Leyton-Brown , Slide 20



Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination

Identifying strategies that survive iterated elimination

This can be done by repeatedly solving our LPs: solving a
polynomial number of LPs is still in P.

Checking whether every pure strategy of every player is
dominated by any other mixed strategy requires us to solve at
worst

∑
i∈N |Ai| linear programs.

Each step removes one pure strategy for one player, so there
can be at most

∑
i∈N (|Ai| − 1) steps.

Thus we need to solve O((n ·maxi |Ai|)2) linear programs.
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Further questions about iterated elimination

1 (Strategy Elimination) Does there exist some elimination
path under which the strategy si is eliminated?

2 (Reduction Identity) Given action subsets A′i ⊆ Ai for each
player i, does there exist a maximally reduced game where
each player i has the actions A′i?

3 (Uniqueness) Does every elimination path lead to the same
reduced game?

4 (Reduction Size) Given constants ki for each player i, does
there exist a maximally reduced game where each player i has
exactly ki actions?

For iterated strict dominance these problems are all in P.

For iterated weak or very weak dominance these problems are
all NP-complete.

Game Theory Week 3 Kevin Leyton-Brown , Slide 22



Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination

Further questions about iterated elimination

1 (Strategy Elimination) Does there exist some elimination
path under which the strategy si is eliminated?

2 (Reduction Identity) Given action subsets A′i ⊆ Ai for each
player i, does there exist a maximally reduced game where
each player i has the actions A′i?

3 (Uniqueness) Does every elimination path lead to the same
reduced game?

4 (Reduction Size) Given constants ki for each player i, does
there exist a maximally reduced game where each player i has
exactly ki actions?

For iterated strict dominance these problems are all in P.

For iterated weak or very weak dominance these problems are
all NP-complete.

Game Theory Week 3 Kevin Leyton-Brown , Slide 22


	Domination
	Rationalizability
	Correlated Equilibrium
	Computing CE
	Computational problems in domination

