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Domination

Domination

@ What is strict domination?
@ What is very weak domination?
@ What is weak domination?

@ How does iterated elimination of dominated strategies work?
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Fun Game: Traveler's Dilemma
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e Two players pick a number (2-100) simultaneously.

Game Theory Week 3 Kevin Leyton-Brown , Slide 4



Domination

Fun Game: Traveler's Dilemma

100
@@@”'

e Two players pick a number (2-100) simultaneously.

@ If they pick the same number, that is their payoff.
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Fun Game: Traveler's Dilemma
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e Two players pick a number (2-100) simultaneously.
@ If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.
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Domination

Fun Game: Traveler's Dilemma

OO O e O O ORORT

e Two players pick a number (2-100) simultaneously.

@ If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

@ Give this game a try. Play any opponent only once.
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Domination

Fun Game: Traveler's Dilemma

OO O e O O O O

e Two players pick a number (2-100) simultaneously.

o If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

e Now play with bonus/penalty of 50.
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Domination

Fun Game: Traveler's Dilemma

OO O e O O O O

e Two players pick a number (2-100) simultaneously.

@ If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

@ What is the Nash equilibrium?
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Fun Game: Traveler's Dilemma

100
@@@”'

e Two players pick a number (2-100) simultaneously.

@ If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

@ Traveler's Dilemma has a unique Nash equilibrium.
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Fun Game: Traveler's Dilemma
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e Two players pick a number (2-100) simultaneously.
@ If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

@ Traveler's Dilemma has a unique Nash equilibrium.
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Domination

Fun Game: Traveler's Dilemma
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e Two players pick a number (2-100) simultaneously.

@ If they pick the same number, that is their payoff.
o If they pick different numbers:

o Lower player gets lower number, plus bonus of 2.
o Higher player gets lower number, minus penalty of 2.

@ Traveler's Dilemma has a unique Nash equilibrium.
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@ If no pure strategy is dominated, can any mixed strategy be
dominated? Why (not)?
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Domination

@ If no pure strategy is dominated, can any mixed strategy be
dominated? Why (not)?

@ If no pure strategy dominates another strategy, can any mixed
strategy dominate another strategy? Why (not)?
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Domination

Domination

@ If no pure strategy is dominated, can any mixed strategy be
dominated? Why (not)?

@ If no pure strategy dominates another strategy, can any mixed
strategy dominate another strategy? Why (not)?

@ Does iterated removal preserve Nash equilibria? (All? Some?)

@ Does the order of removal matter?
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Lecture Overview

© Rationalizability
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Rationalizability

Rationalizability

@ Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

@ assumes opponent is rational
e assumes opponent knows that you and the others are rational

@ Examples
e is heads rationalizable in matching pennies?
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Rationalizability

Rationalizability

@ Rather than ask what is irrational, ask what is a best response
to some beliefs about the opponent

@ assumes opponent is rational
e assumes opponent knows that you and the others are rational
o ...

@ Examples

e is heads rationalizable in matching pennies?
e is cooperate rationalizable in prisoner's dilemma?

@ Will there always exist a rationalizable strategy?

o Yes, equilibrium strategies are always rationalizable.

@ Furthermore, in two-player games, rationalizable < survives
iterated removal of strictly dominated strategies.
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Lecture Overview

© Correlated Equilibrium
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Correlated Equilibrium

Correlated Equilibrium

@ What's the main idea here?
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Correlated Equilibrium

Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N, A, u), a correlated equilibrium is
a tuple (v, m,0), where v is a tuple of random variables

v = (v1,...,vy,) with respective domains D = (Dy,...,D,), 7 is
a joint distribution over v, 0 = (01,...,0y,) is a vector of
mappings o; : D; — A;, and for each agent i and every mapping
o} : D; — A, it is the case that

> w(d)u (o1(dr), . ., 0i(di), - ., on(dn))

deD

> w(d)u (01(da), ., 05(di), - ., on(dn)) -

deD

Game Theory Week 3 Kevin Leyton-Brown , Slide 10



Correlated Equilibrium

Existence

For every Nash equilibrium c* there exists a corresponding
correlated equilibrium o.

@ This is easy to show:
o let Dz = Al

o let m(d) = [[;en 07 (ds)
e 0; maps each d; to the corresponding a;.

@ Thus, correlated equilibria always exist
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Correlated Equilibrium

Remarks

@ Not every correlated equilibrium is equivalent to a Nash
equilibrium
e thus, correlated equilibrium is a weaker notion than Nash

@ Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

o start with the Nash equilibria (each of which is a CE)

e introduce a second randomizing device that selects which CE
the agents will play

e regardless of the probabilities, no agent has incentive to deviate

o the probabilities can be adjusted to achieve any convex
combination of the equilibrium payoffs

e the randomizing devices can be combined
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Lecture Overview

@ Computing CE
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Computing CE

Computing CE

Z p(a)u;(a) > Z pla)u;(al,a_;) Vi€ N, Va;,a; € A;

a€Ala;€a acAla;ca
p(a) >0 Vaec A
> pla)=1

a€A

@ variables: p(a); constants: u;(a)
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Computing CE

Computing CE

Z p(a)u;(a) > Z pla)u;(al,a_;) Vi€ N, Va;,a; € A;

acAla;€a acAla;€a
p(a) >0 Vaec A

> pla)=1

a€A

@ variables: p(a); constants: u;(a)

@ we could find the social-welfare maximizing CE by adding an
objective function

maximize: Z p(a) Z ui(a).

a€A 1EN
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Computing CE

Why are CE easier to compute than NE?

Z pla)ui(a) > Z pla)ui(a;,a_;) Vi€ N, Va;,a, € A;

a€Ala;Ea acAlal€a
pla) =0 Vae A

> pla) =1

a€A

@ intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

@ To change this program so that it finds NE, the first constraint

would be
Z u;(a) H p;la;) > Zui(a;,a_i) H pjla;) Vi€ N, Va, € A;.
acA jEN acA JEN\{i}

@ This is a nonlinear constraint!
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Computational problems in domination

Lecture Overview

© Computational problems in domination
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Computational problems in domination

Computational Problems in Domination

Identifying strategies dominated by a pure strategy
Identifying strategies dominated by a mixed strategy
Identifying strategies that survive iterated elimination

Asking whether a strategy survives iterated elimination under
all elimination orderings

o We'll assume that i's utility function is strictly positive
everywhere (why is this OK?)
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Computational problems in domination

Is s; strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s; for
any pure strategy profile of the others.
for all pure strategies a; € A; for player i where a; # s; do
dom < true
for all pure strategy profiles a_; € A_; for the players other than ¢
do
if ui(si,a,i) > ui(ai,a,i) then
dom + false
break
end if
end for
if dom = true then return true
end for
return false
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Computational problems in domination

Is s; strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s; for

any pure strategy profile of the others.
for all pure strategies a; € A; for player i where a; # s; do
dom < true

for all pure strategy profiles a_; € A_; for the players other than ¢
do

if ui(si,a,i) > ui(ai,a,i) then
dom + false
break
end if
end for

if dom = true then return true
end for

return false
@ What is the complexity of this procedure?

@ Why don't we have to check mixed strategies of —i7?
@ Minor changes needed to test for weak, very weak dominance.
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Computational problems in domination

Constraints for determining whether s; is strictly

dominated by any mixed strategy

Z pjui(aj, a_i) > ui(si,a_i) Va_; € A_;
JEA;

pj >0 Vje A
> pi=1

JEA;
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Computational problems in domination

Constraints for determining whether s; is strictly

dominated by any mixed strategy

Z pjui(aj, a_i) > ui(si,a_i) Va_; € A_;
JEA;

pj >0 Vje A
> pi=1

JEA;

@ What's wrong with this program?
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Computational problems in domination

Constraints for determining whether s; is strictly

dominated by any mixed strategy

Z pjui(aj, a_i) > ui(si,a_i) Va_; € A_;
JEA;

pj >0 Vje A
> pi=1

JEA;

@ What's wrong with this program?
e strict inequality in first constraint: we don't have an LP
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Computational problems in domination

LP for determining whether s; is strictly dominated by any

mixed strategy

minimize E Dj

JEA;

subject to Z pijui(aj, a—;) > ui(si,a—;) Ya_; € A_;
JEA;
p; >0 Vje A

@ This is clearly an LP. Why is it a solution to our problem?
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Computational problems in domination

LP for determining whether s; is strictly dominated by any

mixed strategy

minimize E Dj

JEA;

subject to Z pijui(aj, a—;) > ui(si,a—;) Ya_; € A_;
JEA;
p; >0 Vje A

@ This is clearly an LP. Why is it a solution to our problem?

o if a solution exists with Zj p; < 1 then we can add 1 — Zj Dj
to some py and we'll have a dominating mixed strategy (since
utility was assumed to be positive everywhere)

@ Our original approach works for very weak domination
@ For weak domination we can use that program with a different
objective function trick.
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Computational problems in domination

|dentifying strategies that survive iterated elimination

@ This can be done by repeatedly solving our LPs: solving a
polynomial number of LPs is still in P.

o Checking whether every pure strategy of every player is
dominated by any other mixed strategy requires us to solve at
worst 3, |As| linear programs.

e Each step removes one pure strategy for one player, so there
can be at most ), v (|A4i| — 1) steps.

o Thus we need to solve O((n - max; |A;|)?) linear programs.
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Computational problems in domination

Further questions about iterated elimination

O (Strategy Elimination) Does there exist some elimination
path under which the strategy s; is eliminated?

@ (Reduction ldentity) Given action subsets A, C A; for each
player i, does there exist a maximally reduced game where
each player ¢ has the actions A}?

© (Uniqueness) Does every elimination path lead to the same
reduced game?

O (Reduction Size) Given constants k; for each player ¢, does
there exist a maximally reduced game where each player ¢ has
exactly k; actions?
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Computational problems in domination

Further questions about iterated elimination

O (Strategy Elimination) Does there exist some elimination
path under which the strategy s; is eliminated?

@ (Reduction ldentity) Given action subsets A, C A; for each
player i, does there exist a maximally reduced game where
each player ¢ has the actions A}?

© (Uniqueness) Does every elimination path lead to the same
reduced game?

O (Reduction Size) Given constants k; for each player ¢, does
there exist a maximally reduced game where each player ¢ has
exactly k; actions?

@ For iterated strict dominance these problems are all in P.

o For iterated weak or very weak dominance these problems are
all N'P-complete.
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