Game Theory Week 3

Kevin Leyton-Brown

Game Theory Week 3

Kevin Leyton-Brown , Slide 1

æ

イロン イヨン イヨン イヨン

Lecture Overview

- 2 Rationalizability
- 3 Correlated Equilibrium
- 4 Computing CE
- 6 Computational problems in domination

프 🖌 🛪 프 🕨

A ■

• What is strict domination?

æ

イロン イヨン イヨン イヨン

- What is strict domination?
- What is very weak domination?

æ

프 🖌 🛪 프 🕨

- What is strict domination?
- What is very weak domination?
- What is weak domination?

æ

E ▶ < E ▶

- What is strict domination?
- What is very weak domination?
- What is weak domination?
- How does iterated elimination of dominated strategies work?

< ≣ >

• Two players pick a number (2-100) simultaneously.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- Give this game a try. Play any opponent only once.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- Now play with bonus/penalty of 50.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- What is the Nash equilibrium?

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- Traveler's Dilemma has a unique Nash equilibrium.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- Traveler's Dilemma has a unique Nash equilibrium.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- Traveler's Dilemma has a unique Nash equilibrium.

- Two players pick a number (2-100) simultaneously.
- If they pick the same number, that is their payoff.
- If they pick different numbers:
 - Lower player gets lower number, plus bonus of 2.
 - Higher player gets lower number, minus penalty of 2.
- Traveler's Dilemma has a unique Nash equilibrium.

• If no pure strategy is dominated, can any mixed strategy be dominated? Why (not)?

∃ → < ∃ →</p>

A ■

- If no pure strategy is dominated, can any mixed strategy be dominated? Why (not)?
- If no pure strategy dominates another strategy, can any mixed strategy dominate another strategy? Why (not)?

- If no pure strategy is dominated, can any mixed strategy be dominated? Why (not)?
- If no pure strategy dominates another strategy, can any mixed strategy dominate another strategy? Why (not)?
- Does iterated removal preserve Nash equilibria? (All? Some?)
- Does the order of removal matter?

Lecture Overview

- 3 Correlated Equilibrium
- 4 Computing CE
- 5 Computational problems in domination

→ ∃ →

A ■

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rationalizable in matching pennies?

< 注→ < 注→

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rationalizable in matching pennies?
 - is *cooperate* rationalizable in prisoner's dilemma?

▲ 문 ▶ | ▲ 문 ▶

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rationalizable in matching pennies?
 - is *cooperate* rationalizable in prisoner's dilemma?
- Will there always exist a rationalizable strategy?

(3)

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rationalizable in matching pennies?
 - is *cooperate* rationalizable in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.

(3)

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rationalizable in matching pennies?
 - is *cooperate* rationalizable in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.
- Furthermore, in two-player games, rationalizable ⇔ survives iterated removal of strictly dominated strategies.

3

個 と く ヨ と く ヨ と …

Lecture Overview

Domination

2 Rationalizability

4 Computing CE

5 Computational problems in domination

→ ∃ →

A ■

Correlated Equilibrium

• What's the main idea here?

E> < E>

Formal definition

Definition (Correlated equilibrium)

Given an *n*-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over $v, \sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma'_i : D_i \mapsto A_i$ it is the case that

$$\sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma_i(d_i), \dots, \sigma_n(d_n) \right)$$
$$\geq \sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma'_i(d_i), \dots, \sigma_n(d_n) \right).$$

Existence

Theorem

For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ .

- This is easy to show:
 - let $D_i = A_i$
 - let $\pi(d) = \prod_{i \in N} \sigma_i^*(d_i)$
 - σ_i maps each d_i to the corresponding a_i .
- Thus, correlated equilibria always exist

Remarks

- Not every correlated equilibrium is equivalent to a Nash equilibrium
 - thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium
 - start with the Nash equilibria (each of which is a CE)
 - introduce a second randomizing device that selects which CE the agents will play
 - regardless of the probabilities, no agent has incentive to deviate
 - the probabilities can be adjusted to achieve any convex combination of the equilibrium payoffs
 - the randomizing devices can be combined

2

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Lecture Overview

Domination

- 2 Rationalizability
- 3 Correlated Equilibrium

4 Computing CE

5 Computational problems in domination

3 × 4 3 ×

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{a \in A} p(a) = 1$$

• variables: p(a); constants: $u_i(a)$

æ

< 注→ < 注→

< 🗗 🕨

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

- variables: p(a); constants: $u_i(a)$
- we could find the social-welfare maximizing CE by adding an objective function

$$\label{eq:maximize:} \mbox{maximize:} \quad \sum_{a \in A} p(a) \sum_{i \in N} u_i(a).$$

∃ >

Why are CE easier to compute than NE?

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a'_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

- intuitively, correlated equilibrium has only a single randomization over outcomes, whereas in NE this is constructed as a product of independent probabilities.
- To change this program so that it finds NE, the first constraint would be

$$\sum_{a \in A} u_i(a) \prod_{j \in N} p_j(a_j) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \prod_{j \in N \setminus \{i\}} p_j(a_j) \quad \forall i \in N, \, \forall a'_i \in A_i.$$

• This is a nonlinear constraint!

Lecture Overview

Domination

- 2 Rationalizability
- 3 Correlated Equilibrium

4 Computing CE

5 Computational problems in domination

프 🖌 🛪 프 🕨

Computational Problems in Domination

- Identifying strategies dominated by a pure strategy
- Identifying strategies dominated by a mixed strategy
- Identifying strategies that survive iterated elimination
- Asking whether a strategy survives iterated elimination under all elimination orderings
- We'll assume that *i*'s utility function is strictly positive everywhere (why is this OK?)

Is s_i strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s_i for any pure strategy profile of the others.

```
for all pure strategies a_i \in A_i for player i where a_i \neq s_i do
```

```
dom \leftarrow true
```

for all pure strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do

```
if u_i(s_i, a_{-i}) \ge u_i(a_i, a_{-i}) then

dom \leftarrow false

break

end if

end for

if dom = true then return true

end for

return false
```

▲圖▶ ▲理▶ ▲理▶ 三里

Is s_i strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s_i for any pure strategy profile of the others.

```
for all pure strategies a_i \in A_i for player i where a_i \neq s_i do
```

```
dom \leftarrow true
```

for all pure strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do

```
if u_i(s_i, a_{-i}) \ge u_i(a_i, a_{-i}) then

dom \leftarrow false

break

end if

end for

if dom = true then return true

end for

return false
```

- What is the complexity of this procedure?
- Why don't we have to check mixed strategies of -i?
- Minor changes needed to test for weak, very weak dominance.

Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$
$$p_j \ge 0 \qquad \forall j \in A_i$$
$$\sum_{j \in A_i} p_j = 1$$

Game Theory Week 3

Kevin Leyton-Brown, Slide 19

< E.

Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$
$$p_j \ge 0 \qquad \forall j \in A_i$$
$$\sum_{j \in A_i} p_j = 1$$

• What's wrong with this program?

Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\sum_{\substack{j \in A_i \\ p_j \ge 0}} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$
$$p_j \ge 0 \qquad \forall j \in A_i$$
$$\sum_{\substack{j \in A_i \\ p_j = 1}} p_j = 1$$

• What's wrong with this program?

• strict inequality in first constraint: we don't have an LP

LP for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{j \in A_i} p_j \\ \mbox{subject to} & \displaystyle \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) \geq u_i(s_i, a_{-i}) & \quad \forall a_{-i} \in A_{-i} \\ & \displaystyle p_j \geq 0 & \quad \forall j \in A_i \end{array}$$

• This is clearly an LP. Why is it a solution to our problem?

LP for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{j \in A_i} p_j \\ \mbox{subject to} & \displaystyle \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) \geq u_i(s_i, a_{-i}) & \quad \forall a_{-i} \in A_{-i} \\ & \displaystyle p_j \geq 0 & \quad \forall j \in A_i \end{array}$$

- This is clearly an LP. Why is it a solution to our problem?
 - if a solution exists with $\sum_j p_j < 1$ then we can add $1 \sum_j p_j$ to some p_k and we'll have a dominating mixed strategy (since utility was assumed to be positive everywhere)
- Our original approach works for very weak domination
- For weak domination we can use that program with a different objective function trick.

Game Theory Week 3

Identifying strategies that survive iterated elimination

- This can be done by repeatedly solving our LPs: solving a polynomial number of LPs is still in \mathcal{P} .
 - Checking whether every pure strategy of every player is dominated by any other mixed strategy requires us to solve at worst $\sum_{i\in N} |A_i|$ linear programs.
 - Each step removes one pure strategy for one player, so there can be at most $\sum_{i\in N}(|A_i|-1)$ steps.
 - Thus we need to solve $O((n \cdot \max_i |A_i|)^2)$ linear programs.

Further questions about iterated elimination

- (Strategy Elimination) Does there exist some elimination path under which the strategy s_i is eliminated?
- ② (Reduction Identity) Given action subsets A'_i ⊆ A_i for each player i, does there exist a maximally reduced game where each player i has the actions A'_i?
- Output (Uniqueness) Does every elimination path lead to the same reduced game?
- (Reduction Size) Given constants k_i for each player i, does there exist a maximally reduced game where each player i has exactly k_i actions?

▲ 国 ▶ ▲ 国 ▶

Further questions about iterated elimination

- (Strategy Elimination) Does there exist some elimination path under which the strategy s_i is eliminated?
- ② (Reduction Identity) Given action subsets A'_i ⊆ A_i for each player i, does there exist a maximally reduced game where each player i has the actions A'_i?
- Output (Uniqueness) Does every elimination path lead to the same reduced game?
- (Reduction Size) Given constants k_i for each player i, does there exist a maximally reduced game where each player i has exactly k_i actions?
 - For iterated strict dominance these problems are all in \mathcal{P} .
 - For iterated weak or very weak dominance these problems are all \mathcal{NP} -complete.

・ 国 ト ・ 国 ト ・ 国 ト … 国