Extensive Form Games

Lecture 7

Lecture Overview

1 Perfect-Information Extensive-Form Games

2 Subgame Perfection

Backward Induction

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N,A,H,Z,\chi,\rho,\sigma,u)$, where:

ullet Players: N is a set of n players

- Players: N
- Actions: A is a (single) set of actions

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H is a set of non-terminal choice nodes

- \bullet Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$ assigns to each choice node a set of possible actions

- \bullet Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$ assigns to each non-terminal node h a player $i \in N$ who chooses an action at h

- \bullet Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- ullet Terminal nodes: Z is a set of terminal nodes, disjoint from H

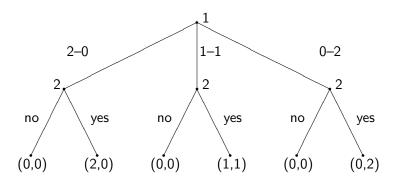
A (finite) perfect-information game (in extensive form) is defined by the tuple $(N,A,H,Z,\chi,\rho,\sigma,u)$, where:

- ullet Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
 - The choice nodes form a tree, so we can identify a node with its history.

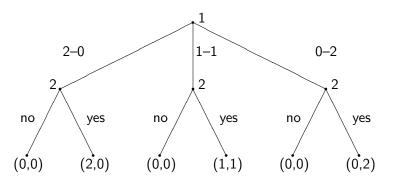
←□ > ←□ > ←□ > ← = > ← = > ← = ≥ ← > ← = > ← = → ←

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$
- Utility function: $u = (u_1, \dots, u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player i on the terminal nodes Z

Example: the sharing game



Example: the sharing game



Play as a fun game, dividing 100 dollar coins. (Play each partner only once.)

Pure Strategies

• In the sharing game (splitting 2 coins) how many pure strategies does each player have?

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8

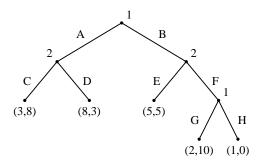
Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

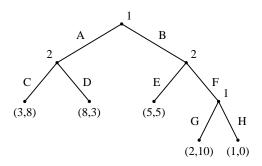
Definition (pure strategies)

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$\underset{h \in H, \rho(h)=i}{\times} \chi(h)$$

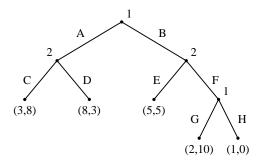


What are the pure strategies for player 2?



What are the pure strategies for player 2?

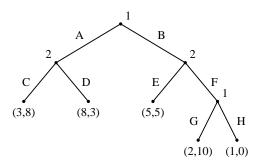
•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$



What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?



What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?

- $S_1 = \{(B,G); (B,H), (A,G), (A,H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

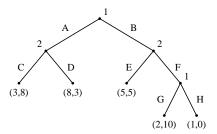
- mixed strategies
- best response
- Nash equilibrium

$\mathsf{Theorem}$

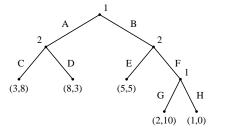
Every perfect information game in extensive form has a PSNE

This is easy to see, since the players move sequentially.

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



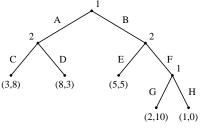
- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1,0	5,5	1,0

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

AG

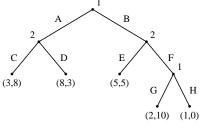


CE	CF	DE	DF
3,8	3,8	8,3	8,3
3,8	3, 8	8,3	8,3
5, 5	2, 10	5, 5	2, 10
5, 5	1,0	5,5	1,0

- this illustrates the lack of compactness of the normal form
 - games aren't always this small
 - even here we write down 16 payoff pairs instead of 5

4□ > 4륜 > 4분 > 4분 > 3분 > 9

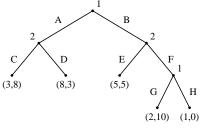
- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
4G	3,8	3,8	8, 3	8,3
^{1}H	3,8	3,8	8,3	8,3
3G	5,5	2, 10	5, 5	2, 10
^{3}H	5,5	1,0	5, 5	1,0

- while we can write any extensive-form game as a NF, we can't do the reverse.
 - e.g., matching pennies cannot be written as a perfect-information extensive form game

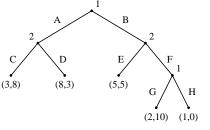
- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1,0	5, 5	1,0

• What are the (three) pure-strategy equilibria?

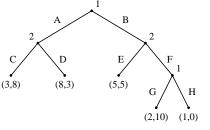
- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1,0

- What are the (three) pure-strategy equilibria?
 - (A, G), (C, F)
 - (A, H), (C, F)
 - \bullet (B,H),(C,E)

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form



	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1,0

- What are the (three) pure-strategy equilibria?
 - (A, G), (C, F)
 - (A, H), (C, F)
 - \bullet (B,H),(C,E)

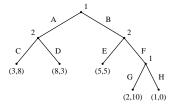
Lecture Overview

Perfect-Information Extensive-Form Games

2 Subgame Perfection

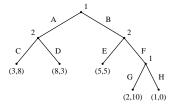
Backward Induction

Subgame Perfection



- There's something intuitively wrong with the equilibrium (B,H),(C,E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - ullet After all, G dominates H for him

Subgame Perfection



- There's something intuitively wrong with the equilibrium (B,H),(C,E)
 - Why would player 1 ever choose to play H if he got to the second choice node?
 - ullet After all, G dominates H for him
 - He does it to threaten player 2, to prevent him from choosing ${\cal F}$, and so gets 5
 - However, this seems like a non-credible threat
 - If player 1 reached his second decision node, would he really follow through and play H?

Formal Definition

Definition (subgame of G rooted at h)

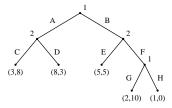
The subgame of G rooted at h is the restriction of G to the descendents of H.

Definition (subgames of G)

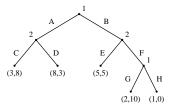
The set of subgames of G is defined by the subgames of G rooted at each of the nodes in G.

- s is a subgame perfect equilibrium of G iff for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'
- Notes:
 - \bullet since G is its own subgame, every SPE is a NE.
 - this definition rules out "non-credible threats"

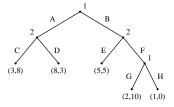
4 D L 4 D L 4 E L 4 E L 50 O



- Which equilibria from the example are subgame perfect?
 - (A, G), (C, F):
 - (B, H), (C, E):
 - (A, H), (C, F):

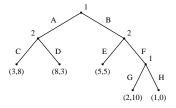


- Which equilibria from the example are subgame perfect?
 - (A,G),(C,F): is subgame perfect
 - (B, H), (C, E):
 - (A, H), (C, F):



- Which equilibria from the example are subgame perfect?
 - (A,G),(C,F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F):

D > 4 A > 4 B > 4 B > B 900



- Which equilibria from the example are subgame perfect?
 - \bullet (A,G),(C,F): is subgame perfect
 - (B, H), (C, E): (B, H) is an non-credible threat; not subgame perfect
 - (A, H), (C, F): (A, H) is also non-credible, even though H is "off-path"

□ > ◆問 > ◆ き > ◆き > き の < ○</p>

Lecture Overview

1 Perfect-Information Extensive-Form Games

- 2 Subgame Perfection
- Backward Induction

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

```
function BACKWARDINDUCTION (node h) returns u(h)
if h \in Z then
 return u(h)
best\_util \leftarrow -\infty
forall a \in \chi(h) do
     util\_at\_child \leftarrow BackwardInduction(\sigma(h, a))
    \begin{array}{l} \textbf{if} \ util\_at\_child_{\rho(h)} > best\_util_{\rho(h)} \ \textbf{then} \\ \bot \ best\_util \leftarrow util\_at\_child \end{array}
return best_util
```

- - $util_at_child$ is a vector denoting the utility for each player
 - the procedure doesn't return an equilibrium strategy, but rather labels each node with a vector of real numbers.
 - This labeling can be seen as an extension of the game's utility function to the non-terminal nodes
 - The equilibrium strategies: take the best action at each node.

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt these as one moves up the tree

- For zero-sum games, BackwardInduction has another name: the minimax algorithm.
 - Here it's enough to store one number per node.
 - It's possible to speed things up by pruning nodes that will never be reached in play: "alpha-beta pruning".