Stochastic Games and Bayesian Games

CPSC 532L Lecture 10

Stochastic Games and Bayesian Games

▶ 《 볼 ▶ 《 볼 ▶ 볼 · · · ○ Q (CPSC 532L Lecture 10, Slide 1

< 4 P→

Lecture Overview

2 Stochastic Games

Stochastic Games and Bayesian Games

æ

(신문) (신문)

< 🗗 🕨

Finitely Repeated Games

- Everything is straightforward if we repeat a game a finite number of times
- we can write the whole thing as an extensive-form game with imperfect information
 - at each round players don't know what the others have done; afterwards they do
 - overall payoff function is additive: sum of payoffs in stage games

- 4 回 > - 4 回 > - 4 回 > - -

Infinitely Repeated Games

- Consider an infinitely repeated game in extensive form:
 - an infinite tree!
- Thus, payoffs cannot be attached to terminal nodes, nor can they be defined as the sum of the payoffs in the stage games (which in general will be infinite).

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i, the average reward of i is

$$\lim_{k \to \infty} \sum_{j=1}^k \frac{r_j}{k}.$$

伺 ト イヨト イヨト

Nash Equilibria

- With an infinite number of equilibria, what can we say about Nash equilibria?
 - we won't be able to construct an induced normal form and then appeal to Nash's theorem to say that an equilibrium exists
 - Nash's theorem only applies to finite games
- Furthermore, with an infinite number of strategies, there could be an infinite number of pure-strategy equilibria!
- It turns out we can characterize a set of payoffs that are achievable under equilibrium, without having to enumerate the equilibria.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definitions

- Consider any n-player game G = (N, A, u) and any payoff vector r = (r₁, r₂,..., r_n).
- Let $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i).$
 - i's minmax value: the amount of utility i can get when -i play a minmax strategy against him

Definition

A payoff profile r is enforceable if $r_i \ge v_i$.

Definition

A payoff profile r is feasible if there exist rational, non-negative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha u_i(a)$, with $\sum_{a \in A} \alpha_a = 1$.

• a payoff profile is feasible if it is a convex, rational combination of the outcomes in G.

Stochastic Games and Bayesian Games

Folk Theorem

Theorem (Folk Theorem)

Consider any *n*-player game G and any payoff vector (r_1, r_2, \ldots, r_n) .

- If r is the payoff in any Nash equilibrium of the infinitely repeated G with average rewards, then for each player i, r_i is enforceable.
- If r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the infinitely repeated G with average rewards.

Folk Theorem (Part 1)

$\mathsf{Payoff} \text{ in Nash} \to \mathsf{enforceable}$

Part 1: Suppose r is not enforceable, i.e. $r_i < v_i$ for some i. Then consider a deviation of this player i to $b_i(s_{-i}(h))$ for any history h of the repeated game, where b_i is any best-response action in the stage game and $s_{-i}(h)$ is the equilibrium strategy of other players given the current history h. By definition of a minmax strategy, player i will receive a payoff of at least v_i in every stage game if he adopts this strategy, and so i's average reward is also at least v_i . Thus i cannot receive the payoff $r_i < v_i$ in any Nash equilibrium.

- ◆ 注 ▶ - ◆ 注 ▶ - -

Folk Theorem (Part 2)

Feasible and enforceable \rightarrow Nash

Part 2: Since r is a feasible payoff profile, we can write it as $r_i = \sum_{a \in A} \left(\frac{\beta_a}{\gamma} \right) u_i(a)$, where β_a and γ are non-negative integers.¹ Since the combination was convex, we have $\gamma = \sum_{a \in A} \beta_a$. We're going to construct a strategy profile that will cycle through all outcomes $a \in A$ of G with cycles of length γ , each cycle repeating action a exactly β_a times. Let (a^t) be such a sequence of outcomes. Let's define a strategy s_i of player i to be a trigger version of playing (a^t) : if nobody deviates, then s_i plays a_i^t in period t. However, if there was a period t' in which some player $j \neq i$ deviated, then s_i will play $(p_{-i})_i$, where (p_{-i}) is a solution to the minimization problem in the definition of v_i .

¹Recall that α_a were required to be rational. So we can take γ to be their common denominator.

Folk Theorem (Part 2)

$\mathsf{Feasible} \text{ and enforceable} \to \mathsf{Nash}$

First observe that if everybody plays according to s_i , then, by construction, player *i* receives average payoff of r_i (look at averages over periods of length γ). Second, this strategy profile is a Nash equilibrium. Suppose everybody plays according to s_i , and player *j* deviates at some point. Then, forever after, player *j* will receive his min max payoff $v_j \leq r_j$, rendering the deviation unprofitable.

Lecture Overview

2 Stochastic Games

Stochastic Games and Bayesian Games

CPSC 532L Lecture 10, Slide 10

æ

(本語) (本語)

< 🗗 >

Introduction

- What if we didn't always repeat back to the same stage game?
- A stochastic game is a generalization of repeated games
 - agents repeatedly play games from a set of normal-form games
 - the game played at any iteration depends on the previous game played and on the actions taken by all agents in that game
- A stochastic game is a generalized Markov decision process
 - there are multiple players
 - one reward function for each agent
 - the state transition function and reward functions depend on the action choices of both players

Formal Definition

Definition

- A stochastic game is a tuple (Q, N, A, P, R), where
 - Q is a finite set of states,
 - N is a finite set of n players,
 - $A = A_1 \times \cdots \times A_n$, where A_i is a finite set of actions available to player i,
 - $P: Q \times A \times Q \mapsto [0,1]$ is the transition probability function; $P(q, a, \hat{q})$ is the probability of transitioning from state q to state \hat{q} after joint action a, and
 - $R = r_1, \ldots, r_n$, where $r_i : Q \times A \mapsto \mathbb{R}$ is a real-valued payoff function for player *i*.

· < @ > < 글 > < 글 > · · 글

Remarks

- This assumes strategy space is the same in all games
 - otherwise just more notation
- Again we can have average or discounted payoffs.
- Interesting special cases:
 - zero-sum stochastic game
 - single-controller stochastic game
 - transitions (but not payoffs) depend on only one agent

Strategies

• What is a pure strategy?

Stochastic Games and Bayesian Games

CPSC 532L Lecture 10, Slide 14

æ

< 注入 < 注入

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Strategies

- What is a pure strategy?
 - pick an action conditional on every possible history
 - of course, mixtures over these pure strategies are possible too!
- Some interesting restricted classes of strategies:
 - behavioral strategy: $s_i(h_t, a_{i_j})$ returns the probability of playing action a_{i_j} for history h_t .
 - the substantive assumption here is that mixing takes place at each history independently, not once at the beginning of the game
 - Markov strategy: s_i is a behavioral strategy in which $s_i(h_t, a_{i_j}) = s_i(h'_t, a_{i_j})$ if $q_t = q'_t$, where q_t and q'_t are the final states of h_t and h'_t , respectively.
 - for a given time *t*, the distribution over actions only depends on the current state
 - stationary strategy: s_i is a Markov strategy in which $s_i(h_{t_1}, a_{i_j}) = s_i(h'_{t_2}, a_{i_j})$ if $q_{t_1} = q'_{t_2}$, where q_{t_1} and q'_{t_2} are the final states of h_{t_1} and h'_{t_2} , respectively.
 - no dependence even on *t*

(ロ) (同) (E) (E) (E)

Equilibrium (discounted rewards)

• Markov perfect equilibrium:

- a strategy profile consisting of only Markov strategies that is a Nash equilibrium regardless of the starting state
- analogous to subgame-perfect equilibrium

Theorem

Every *n*-player, general sum, discounted reward stochastic game has a Markov perfect equilibrium.

Equilibrium (average rewards)

• Irreducible stochastic game:

- every strategy profile gives rise to an irreducible Markov chain over the set of games
 - irreducible Markov chain: possible to get from every state to every other state
- during the (infinite) execution of the stochastic game, each stage game is guaranteed to be played infinitely often—for any strategy profile
- without this condition, limit of the mean payoffs may not be defined

Theorem

For every 2-player, general sum, average reward, irreducible stochastic game has a Nash equilibrium.

(4回) (1日) (日)

A folk theorem

Theorem

For every 2-player, general sum, irreducible stochastic game, and every feasible outcome with a payoff vector r that provides to each player at least his minmax value, there exists a Nash equilibrium with a payoff vector r. This is true for games with average rewards, as well as games with large enough discount factors (i.e. with players that are sufficiently patient).

Lecture Overview

2 Stochastic Games

Stochastic Games and Bayesian Games

CPSC 532L Lecture 10, Slide 18

æ

(本語) (本語)

< 🗗 >

• Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay

(3)

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation

• E • • E •

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation

(3)

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Questions:
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?

- A IB N - A IB N - -

- Choose a phone number none of your neighbours knows; consider it to be ABC-DEFG
 - take "DE" as your valuation
 - play a first-price auction with three neighbours, where your utility is your valuation minus the amount you pay
 - now play the auction again, same neighbours, same valuation
 - now play again, with "FG" as your valuation
- Questions:
 - what is the role of uncertainty here?
 - can we model this uncertainty using an imperfect information extensive form game?
 - imperfect info means not knowing what node you're in in the info set
 - here we're not sure what game is being played (though if we allow a move by nature, we can do it)

米部 シネヨシネヨシ 三日

Introduction

- So far, we've assumed that all players know what game is being played. Everyone knows:
 - the number of players
 - the actions available to each player
 - the payoff associated with each action vector
- Why is this true in imperfect information games?
- We'll assume:
- All possible games have the same number of agents and the same strategy space for each agent; they differ only in their payoffs.
- The beliefs of the different agents are posteriors, obtained by conditioning a common prior on individual private signals.

不良的 不良的

Definition 1: Information Sets

• Bayesian game: a set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

Definition (Bayesian Game: Information Sets)

- A Bayesian game is a tuple (N, G, P, I) where
 - N is a set of agents,
 - G is a set of games with N agents each such that if $g, g' \in G$ then for each agent $i \in N$ the strategy space in g is identical to the strategy space in g',
 - $P\in \Pi(G)$ is a common prior over games, where $\Pi(G)$ is the set of all probability distributions over G, and
 - $I = (I_1, ..., I_N)$ is a set of partitions of G, one for each agent.

・ (山) ・ 白) ・ 白) ・ 白)

Definition 1: Example

æ

< 口 > < 回 > < 回 > < 回 > < 回 > <

Definition 2: Extensive Form with Chance Moves

- Add an agent, "Nature," who follows a commonly known mixed strategy.
- Thus, reduce Bayesian games to extensive form games of imperfect information.
- This definition is cumbersome for the same reason that IIEF is a cumbersome way of representing matrix games like Prisoner's dilemma
 - however, it makes sense when the agents really do move sequentially, and at least occasionally observe each other's actions.

• = • • = •

Definition 2: Example

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1) (0,0) (0,0) (1,2)

Stochastic Games and Bayesian Games

< ∃⇒ CPSC 532L Lecture 10. Slide 24

æ

< 🗗

Definition 3: Epistemic Types

• Directly represent uncertainty over utility function using the notion of epistemic type.

Definition

A Bayesian game is a tuple (N, A, Θ, p, u) where

- N is a set of agents,
- $A = (A_1, \ldots, A_n)$, where A_i is the set of actions available to player i,
- $\Theta = (\Theta_1, \dots, \Theta_n)$, where Θ_i is the type space of player i,
- $p:\Theta \rightarrow [0,1]$ is the common prior over types,
- $u = (u_1, \ldots, u_n)$, where $u_i : A \times \Theta \to \mathbb{R}$ is the utility function for player *i*.

イロン イボン イヨン イヨン 三日

Definition 3: Example

					$I_{2,1}$		I_2	,2				
			I1 I1	,1	$\begin{tabular}{ c c c c c } \hline MP \\ \hline 2,0 & 0, \\ 0,2 & 2, \\ \hline p = 0.3 \\ \hline \hline Coord \\ 2,2 & 0, \\ 0,0 & 1, \\ p = 0.2 \\ \hline \end{tabular}$	2 0 0 1	$PI = \frac{2,2}{3,0} \\ p = \frac{2,1}{0,0} \\ p = 2,1$	D 0,3 1,1 0.1 S 0,0 1,2 0.4				
a_1	a_2	$ heta_1$	θ_2	u_1	u_2		a_1	a_2	$ heta_1$	θ_2	u_1	u_2
U	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0		D	L	$\theta_{1,1}$	$\theta_{2,1}$	0	2
U	L	$\theta_{1,1}$	$\theta_{2,2}$	2	2		D	L	$\theta_{1,1}$	$\theta_{2,2}$	3	0
U	L	$\theta_{1,2}$	$\theta_{2,1}$	2	2		D	L	$\theta_{1,2}$	$\theta_{2,1}$	0	0
U	L	$\theta_{1,2}$	$\theta_{2,2}$	2	1		D	L	$\theta_{1,2}$	$\theta_{2,2}$	0	0
U	R	$\theta_{1,1}$	$\theta_{2,1}$	0	2		D	R	$\theta_{1,1}$	$\theta_{2,1}$	2	0
U	R	$\theta_{1,1}$	$\theta_{2,2}$	0	3		D	R	$\theta_{1,1}$	$\theta_{2,2}$	1	1
U	R	$\theta_{1,2}$	$\theta_{2,1}$	0	0		D	R	$\theta_{1,2}$	$\theta_{2,1}$	1	1
U	R	$\theta_{1,2}$	$\theta_{2,2}$	0	0		D	R	$ heta_{1,2}$	$\theta_{2,2}$	1	2

Stochastic Games and Bayesian Games