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ABSTRACT
Evolutionary game theory has grown into an active area of
research that bridges concepts from biology, evolution, non-
linear dynamics, and game theory. The mechanisms neces-
sary to conduct an evolutionary analysis of games are pre-
sented. Relations between evolutionary stable strategies and
Nash equilibria are considered. Replicator dynamics are de-
veloped and applied to three relevant games. The analysis
of example games is used to illustrate the weaknesses and
strengths of the theory.

1. INTRODUCTION
Evolutionary game theory (EGT) has grown into a field that
combines the principles of game theory, evolution, and dy-
namical systems to interpret the interactions of biological
agents. Practitioners in the field have used the theory to ex-
plain biological phenomena successfully, but EGT can also
be used to interpret classical games from a different per-
spective. This document introduces evolutionary game the-
ory and presents an evolutionary approach to the analysis
of games.

There are several basic components in the EGT analysis of
games. Game agents and their strategies must be simulated
with populations of players, the fitness of different strategies
relative to the population must be computed, and a process
to govern the evolution of the population must be defined.
These simple components can be combined to yield highly
complex solutions. Ideally, under the dynamical process the
strategies of the populations of players will converge to some
stable value. Evolutionary game theorists often claim the
evolutionary solution of the game as the true definition of
rational play.

The concept of simulating populations of players to deter-
mine rational play is not new. A similar idea was apparently
suggested by Nash in his doctoral thesis. The real birth of
EGT, though, is likely due to Maynard Smith [6]. Work
by Cressman [1] focusses heavily on the stability analysis

of games. In Weibul [7] a broader treatment of continuous
and discrete replicator dynamics is given, but with few ap-
plications. Recent work by Hofbauer and Sigmund provide
an excellent mathematical treatment of the topic with many
examples [5].

This document is structured as follows. First, a background
description of evolutionary game theory and its most impor-
tant concepts and equations is given in section 2. The EGT
analysis techniques are then applied to the analysis of some
important games in section 3. A more general discussion of
the results of EGT is given in section 4. Potential avenues
for future explorations are described in section 5, followed
by concluding remarks in section 6.

2. BACKGROUND
In this section the fundamental concepts behind EGT will be
introduced. Evolutionary stable strategies, convergence cri-
teria, and discrete and continuous replicator dynamics will
be covered.Interested readers should refer to the detailed
treatment given by Weibul [7].

2.1 Evolutionary Game Theory
Evolutionary game theory is a different approach to the clas-
sic analysis of games. Instead of directly calculating proper-
ties of a game, populations of players using different strate-
gies are simulated and a process similar to natural selection
is used to determine how the population evolves. Varying
degrees of complexity are required to represent populations
in multi-agent games with differing strategy spaces.

To be exact, consider a n-player game where the ith player
has strategy space denoted by Si. An EGT approach would
be to model each agent by a population of players. The
population for the ith agent would then be partitioned into
groups Ei1, Ei2, . . . , Eik (k might be different for each pop-
ulation). Individuals in group Eij would all play the same
(possibly mixed) strategy from Si. The next step, then,
would be to randomly play members of the populations
against each other. The sub-populations that performed
the best would grow, and those that did not perform well
would shrink. The process of playing members of the pop-
ulations randomly and refining the populations based on
performance would be repeated indefinitely. Ideally the evo-
lution would converge to some stable state for each popu-
lation, which would represent a (possibly mixed) strategy
best response for each agent.



A special case is the symmetric two-player game. In a sym-
metric game payoff matrices and actions are identical for
both agents. These games can be modelled by a single pop-
ulation of individuals playing against each other. When the
game being played is asymmetric, a different population of
players must be used to simulate each agent.

Throughout this document, the EGT approach will make
use of the matrix-vector formulation of games. If s1, . . . , sn ∈

S are the pure strategies available to a player, then that
player’s strategy will be denoted by the column vector ~x.
The ith component of ~x gives the probability of playing
strategy si. Playing a pure strategy sj is represented by
the vector whose jth component is 1, and all other compo-
nents are 0. When the payoff for a player is specified by a
payoff matrix A, a player using strategy ~x against an oppo-
nent with strategy ~y will have payoff ~xT A~y.

There are several critical components to an EGT analysis.
The natural selection process governing the evolution of pop-
ulations requires a measure of fitness for different strategies,
and the process itself must be carefully chosen. Before a full
discussion of the evolution process, though, it is necessary
to describe evolutionary stable strategies.

2.2 Evolutionary Stable Strategies
The analogue of a Nash equilibria in EGT is the evolutionary
stable strategy (ESS). In fact, an ESS is a Nash equilibrium,
but it is somewhat strengthened. ESS are a fundamental
concept in evolutionary game theory and are treated care-
fully in any text on the subject.

A strategy ~S∗ for the symmetric game with payoff matrix A
is an ESS if two conditions are met:

• ~ST A~S∗ ≤ ~S∗T A~S∗, for all strategies ~S 6= ~S∗.

• ~ST A~S < ~S∗T A~S when equality in the first condition
holds.

Clearly any strategy ~S∗ satisfying these criteria is also a
Nash equilibrium (since it is a best response to itself and the
game is symmetric). In fact, an ESS is somewhat stronger
than a weakly dominant strategy. Refinements to the ESS
definition are required for asymmetric games and differing
evolutionary models.

Loosely speaking, a population in an ESS is resistant to
invasion by a small number of mutants playing a different
strategy. This means that if a few individuals playing a dif-
ferent strategy were introduced into a population in an ESS
state, the evolutionary selection process would eventually
eliminate the invaders. As long as the invading population
is sufficiently small (but non-zero), they would not be as
fit as the original population, so they would become extinct
through evolution. The selection process lies at the heart of
EGT, and is presented next.

2.3 Replicator Dynamics
The natural selection process that determines how popula-
tions playing specific strategies evolve is known as the repli-

cator dynamics. Slightly differing versions of these equa-
tions can be found in [1, 5, 7]. There are different replicator
dynamics depending on the evolutionary model being used.
This section will present discrete and continuous time ver-
sions of the equations for symmetric games, and a continu-
ous equation for asymmetric games. Only two-player games
will be considered.

The notation used in the replicator dynamics is continued
from section 2.1. For each population representing an agent,
a vector ~x is constructed with ith component equal to the
frequency of the corresponding sub-population.

Before defining the replicator dynamics a notion of fitness is
required. The fitness function specifies how successful each
sub-population is, it is given by fi(~x) and must be defined
for each component of ~x.

Symmetric normal form games are of particular interest. For
these the definition of the fitness function is immediate. In
the two player symmetric case (where the payoff matrix for
each player and strategy space are identical), the fitness for
xi is just (A~x)i. The subscript i denotes the ith component
of the matrix-vector product. Note that this is just the
expected utility of playing strategy si against a player with
a mixed strategy defined by the vector ~x. The average fitness
of the population is then f̄(~x) = ~xT A~x.

Once the fitness measure is defined the replicator dynamics
can be described. When continuous mixing and interaction
between generations in the model is acceptable, a continuous
time dynamic can be used. In this case each component of
the frequency vector is expressed as a continuous function
of time. A differential equation that governs the growth
of frequencies can then be defined. In keeping with Dar-
win’s theory of evolution, the replicator dynamics specify
that populations of the fittest individuals grow the fastest,
while the least fit diminish the quickest. This gives rise to
the continuous time replicator dynamics (taken from [5]) for
a symmetric game:

ẋi(t) = xi(t)(fi(~x) − f̄(~x)). (1)

Equation 1 rewards strategies that outperform the average
by increasing their frequency, and penalizes poorly perform-
ing strategies by decreasing their frequency. It is important
to note that if at any point in time the frequency of a par-
ticular strategy becomes 0, it will remain there.

In many situations it is not appropriate to model the fre-
quencies as continuous functions of time. Using a discrete
model allows for the prevention of mixing between gener-
ations. The discrete dynamic must play the same role as
the continuous version. Frequencies corresponding to fit
strategies must increase, and those that correspond to un-
fit strategies must diminish. An example discrete dynamic
taken from [7] is given below.

xi(t + 1) =
α + fi(~x)

α + f̄(~x)
xi(t) (2)



The parameter α performs the role of regulating the rate
of growth or decay of strategies, large values will lead to
slower convergence, smaller values give faster, but less stable
convergence.

The two-player asymmetric normal form game requires spe-
cial treatment. In this situation each player will have a
distinct payoff matrix, and must be represented by a dif-
ferent population of simulated players. The fitness is not
measured by play within the same population, but rather
play between populations. Assuming that player 1 has n
pure strategies denoted by s11, . . . , s1n, and player 2 has m
pure strategies denoted by s21, . . . , s2m, then the payoff ma-
trices can be written as A ∈ <n×m, and B ∈ <m×n. The
n × 1 strategy vector for the first player is represented by
~x, and the m × 1 strategy vector for the second player is
represented by ~y. The fitness of an individual playing strat-
egy s1i will be f1i = (A~y)i. The average fitness of the first
population will be f̄1 = ~xT A~y. Similarly the fitness of strat-
egy s2i will be f2i = (B~x)i, and the average fitness for the
second population will be f̄2 = ~yT B~x.

A continuous replicator dynamic can be defined for the two-
player asymmetric normal form game, but a dynamic must
be specified for each player. Using the same reasoning as
for the development of equation 1, the following asymmetric
continuous time dynamic can be used (as defined in [5]).

ẋi = xi((A~y)1 − ~xT A~y)

ẏi = yi((B~x)1 − ~yT B~x)
(3)

It is important to note that the Nash equilibria of a game
are the fixed points of each of the dynamics presented above.
To see this for the symmetric case, consider that in a mixed-
strategy Nash equilibrium (A~x)i is constant, and since the
sum of the components of ~x is 1, (A~x)i = ~xT A~x. A similar
argument holds for the asymmetric case. The fixed points
of the system do not change in time. This means if a popu-
lation ever reaches a state that is a Nash equilibrium, it will
remain there. This does not guarantee that populations will
converge to a Nash equilibrium.

The replicator dynamics, while intuitive, do not generally
lead to systems that are easy to solve. The role of the se-
lection process in EGT will become more clear in the next
section through the presentation of examples.

3. EVOLUTIONARY ANALYSIS OF GAMES
This section will analyze three interesting games that illus-
trate some of the strengths and weaknesses of EGT. The
first game, the prisoner’s dilemma, should be familiar to all.
The second games is analyzed to illustrate some of the con-
vergence problems of the replicator dynamics. A final game
is presented to demonstrate some of the power of EGT in
explaining biological phenomena.

3.1 The Prisoner’s Dilemma
The classic two-player prisoner’s dilemma is an important
game that warrants an investigation with EGT. The game
is expressed in normal form below.

C D
C R, R P, W
D W,P L, L

Here C denotes cooperation between the players and D
denotes defection. The reward R is attained when both
players cooperate, the loser’s reward L is obtained when
both players defect. When one player cooperates and the
other defects, the cooperator receives P (for punishment)
and the defector receives W (for winning).It is assumed that
P < L < R < W . Note that the game is symmetric, both
players have the same payoff matrix.

When the game is repeated a finite number of times, back-
wards induction can be used to show that defection at each
stage by both players is a dominant strategy. How can EGT
be used to interpret the game?

The EGT analysis of the game requires careful definitions
of the payoff matrix and strategy vectors for players. The
payoff matrix for each player is A = ( R P

W L ). Since there are
only two pure strategies, a population with two groups can
be constructed. Denote the frequency of cooperators by x,
the frequency of defectors in the population is then 1−x, so
the strategy frequency vector is ~x = ( x

1−x ). It is sufficient
to study the evolution of the cooperator frequency, since the
defector frequency falls immediately from it.

To simplify analysis consider the concrete example A =
`

−1 −20
0 −10

´

. This choice is analytically convenient but not
exceptional, the same results will hold for any P, L, R, W as
long as the ordering does not change. The average fitness of
the population is then ~xT A~x = 9x2 − 10. The fitness of the
cooperators is (A~x)1 = 19x− 20. Now, letting ~x = ~x(t), the
replicator dynamics for the cooperators (the first component
of ~x) becomes:

ẋ = x((A~x)1 − ~xT A~x)

= x(19x − 20 − 9x2 + 10)

= −x(9x − 10)(x − 1).

A plot of the polynomial ẋ is shown in Figure 3.1. Note
that ∀x ∈ (0, 1), ẋ < 0. That is, the frequency of coopera-
tors is strictly decreasing. Under the replicator dynamics the
frequency of cooperators will converge to 0, leaving a pop-
ulation purely composed of defectors. This indicates that
a population of purely defecting players is a fixed point of
the system, and hence D is a Nash equilibrium. The con-
vergence to a stable point is due to the fact that the pure
strategy D is an ESS. Under the given dynamic, the intro-
duction of any number of cooperators to the population will
result in the extinction of those cooperators and return to
the stable state.

Extending the above analysis to the iterated prisoner’s dilemma
is complicated. The main problem is the exponential growth
in the strategy space with the number of iterations. To re-
duce the complexity of the analysis an EGT approach can
be applied to a small part of the strategy space. In [5], Hof-
bauer and Sigmund propose expressing strategies for each
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Figure 1: The time derivative ẋ for the cooperators
in the prisoner’s dilemma, note that ẋ is negative in
the interval (0, 1), and since x is a frequency this is
the only region of interest.

player as a triple (y, p, q), where y denotes the probability
of initially cooperating, p denotes the probability of cooper-
ating given an opponent’s prior cooperation, and q denotes
the probability of cooperating given an opponent’s prior de-
fection. Such a triple, while limited, is sufficient to express
the Tit for Tat strategy, playing either pure strategy at each
stage game, and many others.

Analysis of the iterated prisoner’s dilemma using this rep-
resentation and the replicator dynamics leads to coupled
nonlinear differential equations for each of y, p, q. The anal-
ysis, while tedious, is not very informative, populations do
not converge to a fixed point and there is no known opti-
mal strategy for the repeated game. The interested reader
is referred to Hofbauer and Sigmund [5].

3.2 The Battle of the Sexes
The battle of the sexes is an interesting game that gives some
insight into the mating habits of certain animals. A thor-
ough treatment of the game can be found in [5]. Consider a
two-player game with two strategies for each player. Males
must choose between being faithful (F ), and unfaithful (U).
Female players must choose between playing hard-to-get (H)
and being easy (E). Producing an offspring generates R
units of reward (to both parents) but requires C units to
raise. Faithful males will stay with their mates and share
the cost of raising their offspring, whereas unfaithful males
will abandon their mates and force the female to pay the full
cost. To prevent being abandoned, hard-to-get females will
require a dating process at a cost of D to both individuals.
While faithful males will endure this, cheaters will not. It
is assumed that 0 < D < R < C < 2(R − D). The game is
expressed in normal form below.

F U
H R − C

2
− D, R − C

2
− D 0, 0

E R − C
2
, R − C

2
R − C, R

The two payoff matrices are then: A =

„

R−
C

2
−D 0

R−
C

2
R−C

«

for the females and B =
“

R−
C

2
−D R−

C

2

0 R

”

for the males.

The game is asymmetric, male and female players are not
interchangeable since their action sets and payoffs differ.

It is clear that for the payoffs given, no pure strategy Nash
equilibrium exists. There is, of course, a mixed strategy
equilibrium. Having females play H with probability p and
E with probability 1 − p, it is found that p = C

2(R−D)

will make the males indifferent to their actions. Similarly,
when males play F with probability q = R−C

R−C−D
, and U

with probability 1 − q, females will be indifferent. The
mixed-strategy Nash equilibrium is then defined by the two
strategy vectors ~pN =

` pN

1−pN

´

, and ~qN =
` qN

1−qN

´

, with

pN = C
2(R−D)

and qN = R−C
R−C−D

.

Will a population of players reach this equilibrium and re-
main there? The evolutionary analysis of this game is non-
trivial. Each player must be represented by a distinct pop-
ulation of players, pairs are then randomly drawn from the
two populations and played against each other. A stabil-
ity analysis of the differential equations generated by the
(asymmetric) replicator equations is also required.

Since each player only has two strategies it is sufficient to
analyze the frequency of playing H for females and F for
males, from which the frequencies for E and U are imme-
diate. Using ~p =

` p
1−p

´

, and ~q =
` q

1−q

´

as the strategy
vectors for females and males respectively, the asymmetric
replicator equations are given below.

ṗ = p((A~q)1 − ~pT A~q)

q̇ = q((B~p)1 − ~qT B~p)
(4)

To observe the behavior pictorially, consider the situation
that R = 5, C = 6, and D = 1. The Nash equilibrium is
based on the mixing strategy ~pN = ( 0.75

0.25 ) for females, and
~qN = ( 0.5

0.5 ) for males. It is important to point out that the
Nash equilibrium is a fixed point of equation 4. If ~pN , ~qN

are substituted into the equation it is found that ṗ = q̇ = 0.
This means if populations were ever in the Nash equilibrium
state, it would not change over time under the replicator
dynamics.

Figure 3.2 shows that while pN , qN may be a fixed point of
the system, it is not globally stable. In fact, initial p and q
values arbitrarily close to the Nash equilibrium will still di-
verge from the fixed point under equation 4. For this game,
there is no ESS. As shown in [5], as long as the ordering
on the parameters R,C, D is unchanged, trajectories will at
best be cyclic, but never converge.

This game illustrates some important points and potential
problems with EGT. What does it mean when an ESS does
not exist? If the ES is a supposed improvement on the Nash
equilibrium, and no ESS exists, then what constitutes ratio-
nal play? Does the EGT analysis give any additional insight
into the game? Some of these issues will be considered in
section 4.

3.3 The Gender Ratio Game
An interesting and informative example of the relevance of
EGT to biological applications can be seen through the gen-
der ratio game. The analysis helps to answer the question
of why animal species generally have the same number of
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Figure 2: Populations diverge from the Nash equi-
librium (denoted by ‘x’). A sample trajectory orig-
inating from ‘o’ spirals away from the equilibrium.

females and males. This problem is a classic result of EGT
and the derivation presented here is based on the work of
Cressman [1].

The game requires some basic assumptions, some of which
will be addressed in section 4. The assumptions are that the
ability of the species to produce male or female children is
determined purely by the females. The game is played by
females and there are two strategies, to produce sons S or
daughters D. A strategy is represented by the vector ~r =
( r

1−r ), where r ∈ [0, 1] is the probability of giving birth to a
son, and is known as the gender ratio. The gender ratio of an
animal is purely determined by the ratio of its mother, so in
this case strategies are inherited genetic properties instead
of choices.

The model further assumes that all females will give birth
to the same number of children, C. This is not unreason-
able, the ability of an animal to produce children does not
necessarily depend on the gender of the children it produces.
The gender ratio does have a direct impact on the number
of grandchildren a female can spawn, and this is used to
measure the fitness of an individual.

To proceed with an EGT analysis, it is necessary to define a
population of players. Initially, let there be N females that
can be separated into k groups, where the ith group has a
unique gender ratio ri. If the number of individuals in a
group is Ni then denote the frequency by xi = Ni/N . The

average gender ratio of the system is given by r̄ =
Pk

i=1 xiri.
Before analyzing how the replicator equations will evolve the
frequencies, more details on the fitness function are needed.

The initial population of N females will each give birth to
C children, so that a total of NC children will be born. The
average gender ratio will dictate that there be r̄NC male
children, and (1 − r̄)NC female children. Now, consider
a female with gender ratio r, her (1 − r)C daughters will
each produce C children for a contribution of (1 − r)C2

grandchildren. It is assumed her sons will mate randomly
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Figure 3: Regardless of the initial average gender
ratio (as long as r̄ ∈ (0, 1)) the population converges
to the globally stable ratio r = 1/2. Note that an
initial gender ratio of r̄ = 0 or r̄ = 1 would lead to
the extinction of the species within one generation.

with the population, produce the same number of children
on expectation, and that the population is large enough that
siblings do not mate. Then each son should produce a total
of: 1

r̄N
(1− r̄)NfC children. Since the female in question will

have rC sons they will produce a total of r 1−r̄
r̄

C2 children.
Thus the total number of grandchildren (and thus fitness) of
a female with gender ratio r will be f(r) = C2(1−r+r 1−r̄

r̄
).

The average fitness of the population is f̄ = f(r̄) = 2C2(1−
r̄).

The next consideration in the EGT analysis is the choice
of a replicator dynamic. Since mixing between generations
should not occur, a continuous dynamic is unsuitable. This
leaves the discrete dynamics of section 2.3. Evolution of
populations is given by:

xi(t + 1) =
α + fi(~r)

α + f̄(~r)
xi(t),

where α is a small constant controlling the growth rate.

Clearly the ith sub-population will grow whenever fi(~r) >
f(r̄). Thus whenever C2(1 − ri + ri

1−r̄
r̄

) > 2C2(1 − r̄), or
ri(1−2r̄) > r̄(1−2r̄), xi will increase. When r̄ < 1/2 mixed
strategies with ri > r̄ will flourish, and those with ri < r̄ will
diminish. Similarly if r̄ > 1/2, all populations with mixed
strategies ri < r̄ will grow, and those populations with ri >
r̄ will shrink. When r̄ = 1/2, the replicator equation will
reduce to xi(t + 1) = xi(t) for each group i.

Figure 3.3 shows the convergence of the mean gender ratio
r̄ to 1/2 under two different initial conditions. The ratio
r̄ = 1/2 is an ESS. As long as the mean gender ratio lies in
the interval (0, 1) initially, it will converge to 1/2. The rate
of convergence is controlled by the α parameter. The intro-
duction of a small number of animals with a different gender
ratio will not change the balance, the replicator equation will
balance the population to reinforce the ESS.

4. DISCUSSION



Having seen a few examples of EGT in action, it is important
to discuss the strengths and weaknesses of the theory. The
first major concern is that while Nash equilibria are fixed
points of the replicator dynamics, they are not generally
stable, as was seen in the battle of the sexes. Convergence
to a Nash equilibrium requires asymptotic stability of the
fixed point, but it is also dependent on the initial conditions
of the populations. This means that given two populations
with different initial distributions across the strategies, the
replicator dynamics might lead to two different stable states.
From a game theory perspective, this may not be desir-
able, but it could be useful biologically. The same species in
slightly different conditions likely would evolve to different
states.

The passage of genetic information (and thus strategies)
used in the models of section 3 has raised concern with bi-
ologists. In each example a haploid model was used where
future populations inherited their strategies purely from one
parent. In [1, 5] mechanisms are described for a more real-
istic modelling of the passage of genetics from generation to
generation, but they further complicate an already cumber-
some model.

The examples in the previous section illustrated some com-
putational problems about evolutionary game theory. Even
the analysis of 2× 2 games was seen to be non-trivial. Cou-
pled nonlinear differential equations arise from the replicator
dynamics for simple systems. The extension to games with
more players and more pure strategies would greatly com-
plicate analysis. Explicitly solving these equations would
be impractical, and the asymptotic stability analysis of high
dimensional system is still an open problem in mathemat-
ics [5]. The numerical stability of the replicator dynamics
is also of concern. The numerical stability of the discrete
dynamic is of special concern, and Cressman even cautions
against its use [1].

With all of these concerns, what can EGT contribute to
game theory? Perhaps EGT offers a more realistic inter-
pretation of the way players with bounded rationality in-
teract in a game. EGT mimics tournament play where
losing strategies are eliminated and winning strategies re-
main. If no clear winning state can be found, does this
suggest the game is too complicated for bounded individ-
uals? The results do suggest, though, that even a single
irrational player could destabilize a population playing in
an equilibrium state.

Clearly the heart of EGT lies in the stability analysis of
differential and difference equations and the implications for
games. It is likely that the main contribution EGT can
make to game theory will be in refining the definition of
rationality. It is more likely that the main contributions of
EGT will be in the analysis of simple biological systems to
explain phenomena such as the gender ratio.

5. FUTURE WORK
Evolutionary game theory is intended to help interpret bio-
logical interactions, and it is in that area that future research
might be most rewarding. The application of the tools devel-
oped in EGT could prove very helpful in explaining common
phenomena (such as the gender ratio). The dynamical mod-

els presented might not generally be suitable for analyzing
species with long lifespan and gestation periods. The real
power of EGT might lie in the analysis of games involving
viruses and bacteria that can evolve quickly. A sufficient
background in biology would be required for such a study.

An alternative exploration might be to focus on the sta-
bility nature of EGT for certain classes of games. Out-
side the realm of two player, two strategy games little is
known about the stability and convergence of the replicator
equations, and open problems exist [5]. Such an analysis
would be challenging mathematically, but could contribute
to the understanding of how bounded individuals play com-
plex games.

6. CONCLUSIONS
Evolutionary game theory combines concepts from nonlinear
dynamics, game theory and biology to provide an alterna-
tive analysis of games. The heart of EGT, though, lies in
the stability analysis of the differential and difference equa-
tions that arise from the replicator dynamics. It was seen
that the analysis of simple two player games was non-trivial
and lead to nonlinear dynamics. The extension of EGT to
larger, more complicated games would be a very difficult
task. It was also seen, though, that EGT does have the
potential to explain certain biological phenomena, such as
the gender ratio. Evolutionary stable strategies were seen
to be related to Nash equilibria, but there lack of existence
or non-uniqueness in some games raises concerns.
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