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ABSTRACT
We consider the problem of sharing the cost of receiving a
service among a set of users. This problem has been stud-
ied extensively in the coalitional game theory literature. In
recent years, a certain class of cost-sharing methods, called
cross-monotonic cost-sharing schemes, has received special
attention, since it has been shown that they lead to group-
strategyproof mechanisms. We study the properties, char-
acterization and limitations of these schemes in the domain
of combinatorial optimization games.

1. INTRODUCTION
A service is available for a set of agents N . For every

subset of agents S ⊆ N , there is a certain cost C(S) associ-
ated with providing them with this service. A cost-sharing

scheme specifies for every agent i and every subset S, how
much agent i should pay for the service, if the subset S is
receiving the service. For concreteness, consider the follow-
ing example: a service-provider is providing financial news
over a network. For every piece of news, a certain subset of
users is interested in receiving it. The cost of broadcasting
the news to a set of users is equal to the cost of routing the
news through the network to them. Assuming that for ev-
ery link in the network, there is a certain price for using it,
it could be cheaper to send the news through a tree to the
set of interested users instead of sending it to each user in-
dividually. Determining the minimum cost of broadcasting
a message in this setting is known as the multicast routing

problem. Here we consider the problem of sharing the cost
of multicast routing: how much should every individual be
charged for receiving the news?

Cost-sharing schemes are closely related to cost-sharing

mechanisms: suppose every agent i has a privately known
utility u′

i for receiving the service. If he receives the service
for a price xi, he enjoys a benefit of u′

i − xi; if he does not
receive the service his benefit is 0. A cost-sharing mecha-
nism asks every agent to declare their utility for the service
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and decides which subset of users to serve and how much to
charge every agent. But agents act selfishly and might mis-
report their true utility in order to receive the service for a
lower price. Hence, we would like our mechanism to be strat-

egyproof 1: an agent should not be able to benefit by lying.
A stronger property is that of being group-strategyproof : no
coalition of agents should be able to benefit by jointly mis-
reporting their values.

There are a number of desirable and sometimes conflict-
ing properties that we would like to have for cost-sharing
schemes. One of them is budget-balance: the amount of
money collected from the agents should be equal to the ac-
tual cost of serving them. Another property, introduced
in [22, 21] is that of cross-monotonicity2: the amount charged
to an agent should not increase if the subset of agents be-
ing served grows. This encourages the agents to promote
the service and is in tune with intuitions about economies
of scale. Cross-monotonic cost-sharing schemes have re-
ceived special attention in the literature, since Moulin and
Shenker [16] proved the fundamental theorem that cross-
monotonic cost-sharing schemes lead to group-strategyproof
cost-sharing mechanisms. We will study the existence and
limitations of such schemes with regard to other properties
- the most important one being budget-balance - for various
cost-functions, especially cost-functions based on combina-
torial optimization problems.

2. BASIC DEFINITIONS
Agents. In the following, N = {1, . . . , n} is the set of

agents. Every agent i has a utility value u′

i for receiving the
service. We assume that agents’ utilities are quasi-linear, i.e.
are of the form u′

iqi − xi, where qi ∈ {0, 1} is an indicator
variable specifying if i receives the service or not and xi is
the amount that i has to pay.

Cost function. A cost function is a function C that as-
signs to every subset of agents, a cost of serving them. We
assume it is non-negative and C(∅) = 0. It is said to be
non-decreasing if S ⊆ T ⇒ C(S) ≤ C(T ). A cost func-
tion is submodular if C(S ∩ T ) + C(S ∪ T ) ≤ C(S) + C(T ).
Submodularity is the economies of scale condition and is a
property widely studied in the literature [16, 10]. It says
that the marginal cost C(S∪{i})−C(S) of adding an agent
i to a set S does not increase when the set S expands. As an

1i.e. dominant-strategy truthful
2in some of the literature, this property is referred to as
population monotonicity.



example, consider the multicast routing problem where the
cost of broadcasting the message is calculated as follows: a
universal spanning tree T , i.e. a tree containing the service
provider and all the users, is fixed; when a subset S of users
requests service, the message is sent along the subtree TS of
T that contains S and the service provider. One can check
that this cost function is submodular and non-decreasing.

Cost sharing mechanism. A cost sharing mechanism M

is a function that given any vector u of agents’ utilities,
returns: (i) a subset Q of agents to be served (note that Q
can also be represented by its indicator variables qi ∈ {0, 1})
and (ii) an amount xi that is charged to agent i, for every i.
There are a number of properties that are desirable for M .
We consider the following3:

No Positive Transfers (NPT): ∀i.xi ≥ 0, no agent is be-
ing paid for receiving the service.

Voluntary Participation (VP): If an agent i is not served,
then xi = 0 and otherwise xi ≤ ui, i.e. every agent
has the option not to participate and receive a utility
of 0. In the game-theory literature, this property is
also referred to as ex-interim individual rationality.

Consumer Sovereignty (CS): Every agent is guaranteed
service if he reports a high enough utility value.

Cost Recovery :
P

i∈Q xi ≥ C(Q), the cost of serving the
participants is recovered. This is also known as weak
budget-balance.

Competitiveness :
P

i∈Q xi ≤ C(Q), no surplus is cre-
ated. Otherwise a competitor could offer the service
for a cheaper cost.

Budget-Balance (BB): Both cost recovery and competi-
tiveness are satisfied, i.e.

P

iinQ xi = C(Q).

Efficiency :
P

i∈Q ui − C(Q) is maximized, i.e. as much
worth as possible is created.

Group-Strategyproofness : If C is a coalition of users
and no member of C is worse off by misreporting their
utility value, then no member is better off either. More
formally, let ui = u′

i for all i /∈ C and let (q, x) and
(q′, x′) be the respective outcomes of the mechanism
for u and u′. Then if u′

iqi−xi ≥ u′

iq
′

i−x
′

i for all i ∈ C,
it must hold with equality for all i ∈ C. That is, even
if a group of agents collude, they can not benefit by
jointly misreporting their utilities.

Cost allocation. A cost allocation for a subset Q ⊆ U is
a function ψ : Q → R

+ ∪ {0} that specifies for each agent
in Q how much he has to pay for receiving service. It is
budget-balanced if

P

i∈Q ψ(i) = C(Q). A cost allocation
function is said to be in the core if it is budget-balanced
and furthermore ∀S ⊆ Q,

P

i∈S ψ(i) ≤ C(S), i.e. no subset
of agents has an incentive to secede.

Cost sharing scheme. A cost sharing scheme is collection
of cost allocations for every subset of U . More formally, a
cost sharing scheme is a function ξ : 2U × U → R

+ ∪ {0}
such that if i /∈ Q, then ξ(Q, i) = 0. It is said to be budget-
balanced (resp. in the core) if ξ(Q, ·) is budget-balanced
(resp. in the core) for every Q ⊆ U . A cost sharing scheme

3These definitions are largely taken from [9].

is cross-monotonic if for R ⊇ Q, ξ(R, i) ≤ ξ(Q, i) for every
agent i, i.e. the cost share of any agent does not increase as
the subset being served expands. It is not hard to see that
a budget-balanced cross-monotonic cost sharing scheme is
also in the core but the converse need not hold.

3. THE MOULIN-SHENKER THEOREM
In [16], Moulin and Shenker prove the following funda-

mental theorem:
Theorem 1. For any budget-balanced cross-monotonic cost
sharing scheme ξ, there is a mechanism M (ξ) that meets
BB, NPT, VP, CS and is group-strategyproof. Furthermore,
if the cost function is submodular, the converse is also true.

The mechanism M (ξ) is simple: initialize Q = U ; of-
fer service to the agents in Q at the price ξ(Q, i) dropping
anyone who refuses (i.e. his utility is less than the offered
price); repeat until ui ≥ ξ(Q, i) for all i ∈ Q. Note that
since ξ is cross-monotonic, the order in which the agents are
offered service in the above algorithm does not matter, as
the offered price can only increase in a later stage.

They study the case of non-decreasing submodular cost
functions more closely. Consider the following incremen-

tal cost-sharing method : let σ be an arbitrary fixed or-
dering of the agents, let S ⊆ N be a given subset of k
agents and i1, . . . , ik be the elements of S, ordered accord-
ing to σ. Set ξσ(S, i1) = C({i1}) and for 2 ≤ j ≤ k,
ξσ(S, ij) = C({i1, . . . , ij}) − C({i1, . . . , ij−1). If C is sub-
modular and non-decreasing, this cost-sharing scheme is BB
and cross-monotonic. The classical Shapley value [20] is the
arithmetic mean of these schemes over all possible σ. It
is a classical result in game theory that no strategyproof
mechanism is both budget-balanced and efficient, even for
submodular cost functions. Moulin and Shenker show that
the Shapley value has the lowest worst-case loss of efficiency
over all utility profiles [16].

Whereas the Shapley value tries to charge more to agents
that cause more cost, Dutta and Ray introduced the egali-

tarian cost-sharing method [3] that attempts to equalize the
cost-shares among the agents as much as possible while pre-
serving the core property. Moulin and Shenker [16] show
that the egalitarian method is also a BB-cross-monotonic
cost-sharing scheme if the underlying cost function is sub-
modular (but not necessarily non-decreasing).

4. MULTICAST ROUTING AND MINIMUM
SPANNING TREES

For the multicast routing problem, we can calculate the
cost of service to a set of users S, as explained in Section
2, by fixing a universal spanning tree T and considering the
cost of a subtree TS containing the source (i.e. the ser-
vice provider) and S. This cost function is submodular and
non-decreasing [4], so the Shapley value and the egalitarian
method both provide us with a BB-cross-monotonic cost-
sharing scheme.

There is one problem with this approach: the cost of the
optimal tree T ∗

S connecting the source to the set of serviced
agents, could be arbitrarily smaller than the cost of TS . No-
tice that T ∗

S could even include vertices not in S. T ∗

S is
known as the minimum Steiner tree containing the source
and the set S. Finding a minimum Steiner tree is well-known
to be NP -hard. Furthermore, if we define the cost of ser-
vicing a set S to be the cost of T ∗

S , then this cost function



is neither submodular nor non-decreasing. But in the case
of metric Steiner tree, when the costs of the links of the
network define a metric, there exists a 2-approximation al-
gorithm for this problem based on the minimum cost span-
ning tree (MCST) problem. So, we turn our attention to
this problem now and return later to the multicast routing
problem.

The well-known MCST problem is given by a graph G
with weights on edges and the goal is to find a tree of mini-
mum weight connecting all the vertices. In the MCST cost-
sharing game, the cost of providing service to a set of users
is given by the MCST that contains them. This problem
is well-studied in the literature [11, 9, 15, 2]. Kent and
Skorin-Kapov [11] present a class of cost-sharing schemes
in the core of this game and one BB-cross-monotonic cost-
sharing scheme. In [9], Jain and Vazirani present a class of
BB-cross-monotonic cost-sharing schemes parameterized by
n equalizing functions fi : R

+ → R
+. These functions can

decode some fairness criteria and could for example, relate
to the probability distribution functions of user’s utilities.
They use linear-programming duality in order to achieve
this result. Moretti et al. [15] present a BB-cross-monotonic
cost-sharing scheme based on Kruskal’s greedy MCST algo-
rithm. In [2], Branzei et al. define the P-value for MCST,
a BB-cross-monotonic cost-sharing scheme derived from the
one presented in [15] in a similar fashion as the Shapley-
value is derived from incremental cost-sharing schemes.

5. ON APPROXIMATION
It is not always possible to achieve budget-balance to-

gether with other properties; or it might be computation-
ally hard to compute the cost shares. For example, in the
case of Steiner tree’s, we saw that even computing the cost
of an optimal Steiner tree is NP -hard. Therefore, Jain and
Vazirani [9] introduced the concept of α-budget-balance: a
cost allocation function ψ for a subset Q of U is α-budget-
balanced if αC(Q) ≤

P

i∈Q ψ(i) ≤ C(Q). That is, only a

fraction α of the cost is recovered4. A cost sharing scheme
ξ is α-budget-balanced if ξ(Q, .) is α-budget-balanced for
every Q in U . The definition of the α-core is the same as
the definition of the core except that we require α-budget-
balance instead of budget-balance. Again, one can show that
an α-budget-balanced cross-monotonic cost sharing scheme
lies in the α-core but the converse need not hold. A mech-
anism is said to be α-budget-balanced if its cost allocation
has this property.

Jain and Vazirani [9] show that Theorem 1 still holds if
BB is replaced by α-BB. As mentioned earlier, the metric
Steiner tree problem can be 2-approximated by the MCST
problem. Hence, any one of the BB-cross-monotonic cost-
sharing schemes for MCST presented in the last section re-
sult immediately in a 1

2
-BB cross-monotonic cost-sharing

scheme for the Steiner tree game, i.e. also for multicast
routing.

For the metric traveling salesman problem (TSP), there
exists a 2-approximation based on doubling an MCST; thus,
the above mentioned cost-sharing methods also result in
a 1

2
-BB cross-monotonic cost-sharing scheme for the TSP-

4One can divide the given inequality by α and thus relax
competitiveness instead of cost-recovery. This is, in fact,
the way that Jain and Vazirani did it in [9]. The results
remain the same.

game [9].
Further in the paper [9], Jain and Vazirani also turn to

a more general approach: they consider a class of NP-hard
minimization problems for which there exists an α factor
approximation algorithm based on a linear program (LP).
They show that if this LP has a certain property, called
the covering property, then there exists an efficiently com-
putable cost sharing scheme in the α-core of the correspond-
ing game. They leave the question of whether there is also a
cross-monotonic cost sharing scheme as an important open
problem.

Biló et al. [1] consider the problem of multicast routing
in wireless networks. In this problem, we assume that the
nodes of the network are in d-dimensional euclidean space
and every node i has to be assigned a range ri for trans-
mitting messages. In doing so, it consumes some power,
namely γ · rα

i , where γ and α are parameters and α ≥ d
is assumed. Again, a message is to be sent from a source
node to a given subset of nodes and the goal is to find a
range-assignment, such that the total energy consumption
is minimized. The question is again how to distribute this
cost among the receivers of the message. Biló et al. [1] ar-
gue that if a universal spanning tree T is fixed and costs
are calculated based on it, then the associated cost-function
is non-decreasing and sub-modular and so there exist cross-
monotonic cost-sharing schemes. However, if we consider
the optimal range-assignment as our cost-function, then this
result only applies if d = 1 or α = 1. For the case where
α > 1 or d > 1, they study the relationship between wireless
multicast routing and the (standard) multicast routing and
show that the budget-balanced allocations presented earlier
for MCST yield a 1

2(3d−1)
-BB cross-monotonic cost-sharing

scheme for this problem.

6. EQUITABLE COST ALLOCATION
In [10], Jain and Vazirani study the case of submodular

cost functions more closely. By generalizing their method
of [9], they present a class of (efficiently computable) BB-
cross-monotonic cost sharing schemes, derived from a primal-
dual type algorithm, parameterized by equalizing functions

fi : R
+ → R

+ for every agent i. As in [9], these functions
can encode some fairness criterion. They could be used to
provide some kind of price discrimination - a property that
is crucial to the survival of many industries (e.g. consider
airlines: business travelers should be charged more than ca-
sual travelers). If these functions are all set to identity, then
their method results exactly in the egalitarian method pre-
sented by Dutta and Ray [3]; so, it includes this method as
a special case. They define the notion of max-min fairness

and min-max fairness for a given set of equalizing functions;
max-min fairness aims to maximize the minimum cost-share
and min-max fairness aims to minimize the maximum cost-
share, thus these criteria ensure that no one underpays /
overpays. They denote this property of satisfying both of
these fairness criteria at the same time together with being
in the core of the game by opportunity egalitarianism and
show that their cost sharing method is the only opportunity
egalitarian method for any given set of equalizing functions.
By the end of the paper, they present some special functions
that could be used as the equalizing functions such that cer-
tain properties are achieved, e.g. maximizing acceptance
probability.



They also note the Hokari [7] independently generalized
Dutta-Ray solutions to give a class of cost-sharing methods
that turns out to be identical to these equitable cost alloca-
tion methods. Hokari called these methods monotone path

cost allocations, but it is interesting to note that his formal-
ization and point of view are quite different from Jain and
Vazirani - and so are his definitions and algorithms (he does
not address issues of algorithmic efficiency, though).

7. MINIMUM ARBORESCENCE, SHORT-
EST PATH AND NETWORK DESIGN

One can consider a problem similar to MCST in directed
graphs, namely finding the minimum arborescence: a set
of edges connecting every vertex via a directed path to the
source. In [15], Moretti et al. present an example that shows
that the corresponding cost-sharing game does not have a
budget-balanced cross-monotonic cost-sharing scheme. How-
ever, in [14], Moretti et al. consider a simpler problem:
finding a minimum arborescence in a directed acyclic graph,
where every vertex is guaranteed to have at least a direct
link to the source (but this link could be more expensive
than using another path). Their study is motivated by the
problem of connecting houses on a mountain with a purifier
- this problem results exactly in the given setting. They
present a BB-cross-monotonic cost-sharing method for the
corresponding cost-sharing problem.

In the shortest-path problem, a graph G together with
a source s and destination t are given. Every agent is an
edge of the graph. In our terminology, he receives service,
if he is part of the shortest path connecting s to t. For a
given subset of agents, the cost of serving them is equal to
the shortest path connecting s to t using only edges of the
given subset. This setting makes more sense when regarded
in the context of the corresponding cost-sharing mechanism:
suppose every agent has a utility for being part of the short-
est path. Then the mechanism has to select a shortest path
based on the agents’ declared utilities and decide how much
to charge each agent. Voorneveld and Grahn [23] present a
BB-cross-monotonic cost-sharing scheme for a more general
setting of this game, where agents are allowed to own a set
of edges instead of owning only one edge.

Network design is a term that encompasses a wide range
of combinatorial optimization problems. We first consider
metric facility-location: we are given a set of facilities F and
a set of users N . We want to open a subset of these facilities
and connect every user to some facility at minimum cost.
Opening a facility p involves a cost fp and there is also a cost
associated with using each link in the network. We assume
that the costs of the links obey the triangle inequality, i.e.
define a metric. The corresponding cost-sharing problem is
given by the cost function where the cost of serving a subset
of users is the cost the minimum facility-location connecting
only the given subset of users to the facilities.

Pal and Tardos [17] present a general technique for turning
a primal-dual algorithm into an α-budget-balanced cross-
monotonic cost sharing scheme and thus, by Theorem 1,
into a group strategyproof mechanism. Achieving cross-
monotonicity can be at the cost of getting a weaker budget-
balance-factor α than the approximation factor of the given
primal-dual algorithm. Their idea is to use a “ghost process”
that virtually keeps paying for the costs during the course
of their algorithm and thus ensures cross-monotonicity; the

challenge is to show that after these virtual payments are
removed, a constant factor of the budget is still being re-
covered. By applying their method to the metric facility-
location game, they achieve a 1

3
-BB cross-monotonic cost-

sharing scheme for this problem.
They also consider the single-source rent-or-buy (SSRB)

problem: given is a graph G with source s and edge-weights
ce (for every edge e) and a number M . The goal is to find a
tree connecting every node to the source, where every edge
can either be bought at cost M · ce or rented at cost ce times
the number of users that use the edge on their way to the
sink. By applying their primal-dual scheme to this problem,
they present a 1

15
-BB cross-monotonic cost-sharing scheme

for it.
In a follow-up work, Gupta et al. [6] further investigate

the SSRB problem by building on the idea of sharing the ex-
pected cost of a randomized algorithm given by Gupta et al.
in [5]. By using derandomization techniques on that algo-
rithm, they achieve a 1

4.6
-BB cross-monotonic cost-sharing

scheme (computable in polynomial time) for this problem -
a large improvement over the previous 1

15
factor.

In the connected facility-location problem, in addition to
the requirements of the metric facility location, we also re-
quire that the open facilities must be connected via a Steiner
tree. With some small alterations, it is also possible to re-
gard SSRB as a special case of this problem. Leonardi and
Schäfer [13] present a 1

30
-BB cross-monotonic cost-sharing

mechanism for this problem based on the methods suggested
by Pal and Tardos in [17].

Finally, we consider the Steiner Forest game: an undi-
rected graph G with edge weights is given, together with a
set of k terminal pairs (a terminal pair is a pair of vertices).
The goal is to find a subgraph of minimum cost that connects
each pair (s, t) of the given terminal pairs (such a subgraph
will of course always be a forest). Könemann et al. [12] re-
cently derived a 1

2
-BB cross-monotonic cost-sharing scheme

for this network design problem.

8. LIMITATIONS OF CROSS-MONOTONICITY
In a recent paper, Immorlica, Mahdian and Mirrokni [8]

study the limitations of cross-monotonic cost sharing schemes.
They use a novel technique based on the probabilistic method
to derive upper bounds for the budget-balance factor of
cross-monotonic cost sharing schemes for several combinato-
rial optimization games including edge cover, vertex cover,
set cover, metric facility location, maximum flow, arbores-
cence packing and maximum matching. The cost function of
these games simply assigns to every set of agents the cost of
a minimum edge cover, vertex cover, etc. of the subproblem
induced by that set of agents. In maximization games we can
think of profit sharing instead of cost sharing. For metric
facility location, they show an upper bound of 1

3
- equal to

the lower bound achieved by Pal and Tardos [17] - thus clos-
ing the gap. For the set cover game they show that no more
than an O( 1

n
)-fraction of the cost can be recovered. So, ba-

sically all hope is lost for this important universal problem.
For vertex cover they show an upper bound of O(n−1/3),
demonstrating that cross-monotonicity is strictly harder to
achieve than allocation in the core, since the vertex cover
game has a cost-sharing-scheme in the 1

2
-core.

Finally, they consider the implications of their results
on the existence of α-budget-balanced group-strategyproof
mechanisms. Since the cost functions of these combinatorial



optimization games are not submodular, the back-direction
of Theorem 1 does not hold. In fact, they give examples
of trivial group-strategyproof mechanisms that recover all
the cost but intuitively do not seem fair nor efficient (e.g.
put the whole burden on only one agent). To resolve this
problem, they state two additional properties: no free rid-

ers, requiring that no one receives the service for free; and
upper continuity, stating that for every agent i, if he receives
service for every bid greater than ui while holding other bids
fixed, then he also gets service if he bids ui. They show the
following theorem:
Theorem 2. The cost function C has an upper-continuous
α-budget-balanced group-strategyproof mechanism with no
free riders if and only if it has an α-budget-balanced cross-
monotonic cost-sharing scheme.

Thus, their negative results also apply to group-strategyproof
mechanisms satisfying these two additional properties.

9. BEYOND CROSS-MONOTONICITY
If the underlying cost function is not submodular, the back

direction of Theorem 1 does not hold. Hence, there exist
group-strategyproof mechanisms that are not derived from
cross-monotonic cost-sharing schemes. In [18], Penna and
Ventre define the notion of self-cross-monotonicity. This
notion is closely related to the mechanism given in The-
orem 1. Essentially it means that the cross-monotonicity
property need only hold for subsets of users that could pos-
sibly be considered by that mechanism - not for all sub-
sets5. They show that if an approximation algorithm bears
certain “reasonable” properties, it will always admit a self-
cross-monotonic cost-sharing scheme satisfying NPT, VP
and CS with the same BB-factor as the approximation ratio
of the algorithm. Based on this idea they derive a group-
strategyproof mechanism for the optimal Steiner tree game
that is budget-balanced. This might seem surprising at first,
since the Steiner tree problem is NP -hard to begin with; but
their trick is that they grow and only consider a subset of
users for which they know that their optimal Steiner tree is
equal to their MCST. This is accomplished by using Prim’s
greedy MCST algorithm. This same mechanism is 1

3d−1
-BB

for the wireless network multicast routing game.
Their suggested mechanisms suffer, though, from a major

flaw: they fall under the mechanisms that are categorized
as “trivial” in [8], since they put the whole burden of paying
the cost on only one agent. That is, if a set of m agents
is being served, then m − 1 of them are always free riders
and only one agent has to pay for them all. They tackled
this problem in a very recent follow-up paper [19], where
they study the free-rider issue for Steiner-tree games. They
present a BB group-strategyproof mechanism with at most
|S| − |leaves(T )| free riders, when S is the subset being
served and T is the Steiner tree being used. A similar result
holds for the wireless multicast routing game, where BB is
replaced by 1

3d−1
-BB. In general, they prove the following

negative result:
Theorem 3. Let COPT (·) be a cost function which is
NP -hard (to approximate within a factor α). Then, no
polynomial-time strategyproof mechanism guarantees no free
riders and satisfies NPT, VP, CS and (α-approximate) BB,
unless P = NP .

5the exact definition is rather complicated and out of the
scope of this text.

10. CONCLUSIONS AND FUTURE WORK
Since Moulin and Shenker’s paper [16], a lot of attention

has been payed to cross-monotonic cost-sharing schemes in
the theoretical computer science community. For submod-
ular cost-functions, a large class of such schemes exist and
is characterized. But for many other non-submodular cost-
functions - such as the functions resulting from most com-
binatorial optimization games - it seems to be particularly
difficult to derive such schemes. In the literature this is often
done via linear-programming duality or other often compli-
cated methods.

The negative results of Immorlica et al. [8] show that for
many interesting combinatorial optimization games, it is not
even possible to achieve good approximations on the budget-
balance factor when cross-monotonicity is required. A pos-
sible future direction would be to try to introduce random-
ness into cross-monotonicity and group-strategyproofness;
in many areas of computer science, it has been possible to
overcome limitations by using randomness. Hence, this di-
rection might be a promising area.
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