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ABSTRACT
The use of sampling is investigated for computing equilib-
rium bidding strategies in auctions. An algorithm is pro-
posed that requires minimal assumptions on the agents. In
this paper we concentrate on asymmetric auctions with in-
dependent bidder valuations, however the approach is ex-
tendable to other scenarios, for example having bidders with
different risk attitudes. Results are presented and the per-
formance of the algorithm is discussed.
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1. INTRODUCTION
Auctions have been a very popular mechanism for the trad-
ing of goods or allocation of resources. There are many
different types of auctions, e.g. English, Dutch, or Japanese.
The different types are designed to optimise some measure(s),
such as welfare or efficiency [6, 12]. The buyers (agents) bid
according to a strategy that maximises their utility.

In order to analyse this setting we use game theory. In that
framework, an auction can be represented as a single-shot
Bayesian game1 One problem is to find the equilibrium strat-
egy of the agents. In an imperfect information game, such

∗This project was for the course Multiagent Sys-
tems taught by Kevin Leyton-Brown. Fur-
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1Sequential auctions can be represented as extensive form
games [2].

as auctions, one such equilibrium is the Bayes-Nash equilib-
rium (BNE). Computing a BNE is generally very difficult.
In order to find a solution the setting is often constrained
by making simplifying assumptions.

Tools are available to help solving these problems, such as
Gambit2 and Gala [5]. These are able to solve finite exten-
sive and normal form games, however, they are not designed
to handle the general or more complex cases.

Various methods have been developed to find, or at least ap-
proximate, the BNEs. Sometimes the problem can be rep-
resented as a linear program (e.g. simple 2 person games).
The game may be simplified by representing the problem
in a more compact form [1, 2, 13]. Sampling has also been
used. Cai et al. employ Monte Carlo in sequential auc-
tions to sample the valuation space of the other agents and
then use Gambit to solve the resulting complete information
game [2]. Walsh et al. solves for a BNE using a payoff ma-
trix of heuristic strategy profiles, where the average payoffs
(ex-ante) are approximated by sampling from the competing
buyers’ valuations.

Simple auctions can be solved analytically, or by using a
tool like Gambit. However, by relaxing some simplifying
assumptions the problem of finding BNEs can easily become
unmanageable for these methods. For example:

• introduce an entry cost

• asymmetric auction (different valuation distribution
functions for agents)

• different risk attitudes for different bidders (e.g. con-
stant absolute risk aversion such as log with constant
factor or different bases)

• having k repeated auctions

A lot of research has been done on auctions, most assume
symmetric information. In practice, agents often draw their
valuations from different distributions. This is the case for

2Gambit is a library of game theory software and tools for
the construction and analysis of finite extensive and normal
form games. See http://econweb.tamu.edu/gambit/.



example in contract bidding. Each of the bidders has a dif-
ferent opportunity cost for completing the project. In recent
years some work has been done on relaxing that assumption
[3, 8, 9, 10]. Many studies focus on expected revenue [4, 11].
Campoo et al. [3] and Riley et al. [8, 9, 10] formalise methods
to characterise the equilibrium bidding strategies and rev-
enue of the asymmetric auction. Often some (simplifying)
assumptions are made, such as limit the number of bidders
to two or assume translation invariant bid functions [7].

2. PROBLEM
For this study we focus on sealed-bid first-price auctions
with bidders having asymmetric information about the good
for sale (asymmetric auction). The agents do not know each
other’s exact valuation (type), but know the distributions
from which they are drawn. We also assume that the val-
uations are independent and the type space is continuous.
The valuation probability distribution is allowed to differ be-
tween the agents (asymmetry) and no restriction is placed
on the functional form of the distributions.

In a sealed-bid auction, each agent simultaneously submits
a single bid for for the item. We assume that all bidders par-
ticipate in the auction, have quasi-linear utility and are risk-
neutral. The goal of this project was to develop a sampling
based approach for finding best-response strategy profiles or
a good approximations to the BNEs.

3. APPROACH
Sampling is a relatively new approach to solve BNEs in auc-
tion games. A few articles are available, such as work by
Cai et al.[2], which concentrates on sequential multi-unit
auctions. Cai, however, relies on Gambit to solve parts of
the problem, which can be a bottleneck when considering
larger problems.

The approach taken in this project is based on Monte Carlo
sampling and simulated annealing. This algorithm is de-
signed to find a myopic best response. Provided that it con-
verges, the solution found will be a Bayes-Nash equilibrium.
The pseudo-code is given in Algorithm 1. First the strategies
are initialised to truthful bidding. A different initial strat-
egy profile may be chosen, for example one that is closer to
the desired equilibrium. Then each agent in turn attempts
to improve his expected utility for a sample chosen from its
valuation space. Given his type, the agent now computes
a best response to the other agents’ current strategies and
then updates his bidding strategy accordingly. The details
on the computation of the best response and the method
for updating the strategy profile are described in the next
sections.

3.1 Computing a Best Response
Finding a best response requires computing the expected
utility for each agent given the other agents’ strategy, which
is then to be maximised. The utility computation involves
evaluating an integral of the form

E(ui(b, si, s−i)) =

Z
ui(b, si, s−i) P (v−i|vi) dv−i (1)

where u is the utility, v is the valuation, and s is the strat-
egy. The subscripts i and −i denote agent i and the other

Algorithm 1: Pseudo code of sampling-based algorithm.

set t = 0 and temperature T0 = 1;
initialise strategy of each agent to truthful bidding;
while strategies changing (by more than some threshold)
do

forall agents i do
sample a valuation from i’s type space;
compute best response given other agents’ current
strategy;
update i’s strategy profile;
t = t + 1;

end
set Tt+1 according to cooling schedule

end

agent(s), respectively. P is the joint probability of the other
agents’ valuations given vi (type). Note that for this project
we have assumed that the valuations are independent, thus
P (v−i|vi) = P (v−i). This integral may not be analytically
solvable, e.g. in the case of complicated valuation distribu-
tion functions for the agents.

The maximisation of the expected utility is solved using
simulated annealing. The pseudo-code is shown in Algo-
rithm 2. We sample from the action space, i.e. bids, using
a proposal distribution q and evaluate the expected utility
for that choice. The fitness of that sample is evaluated by
comparing the utilities. The samples are generated using
a Markov-Chain symmetric random walk using a Gaussian
distribution function q centered at the last accepted sam-
ple. The simulated annealing is implemented as a contin-
uous process in the main loop shown in Algorithm 1. A
decreasing exponential is used as a cooling schedule. As the
temperature drops, the chance of choosing bids that gener-
ate lesser utility decreases. Care must be taken not to lower
the temperature too fast, as the system may get stuck in a
local minima. However, if the cooling rate is too slow, then
the algorithm may take a long time to converge, or possibly
not converge at all, depending on the equilibrium property.
The optimal cooling schedule depends on the specific prob-
lem to be solved.

Algorithm 2: Pseudo code for computing best response.

initialise b0;
compute expected utility: u0 = E [ui(b

0, vi, v−i)];
for k = 0 to N-1 do

Sample z ∼ U[0,1];

Sample b∗ ∼ q(b∗|b(k));
compute expected utility u∗ = E [ui(b

∗, vi, v−i)];

if z < A(bk, b∗) = min

j
1,

“
u∗
uk

” 1
Tt

ff
then

b(k+1) = b∗;
u(k+1) = u∗;

else

b(k+1) = bk;
u(k+1) = uk;

end

end
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Figure 1: Updating of PWL function.

3.2 Updating the Bidding Strategy
The bidding strategy is represented as a piecewise linear
(PWL) function. After finding a best response bi for a val-
uation vi, we want this function to pass through that point.
This is illustrated by the diagram shown in Figure 1. The
solid (red) point P at (bi, vi) represents new best response.
The points superscripted by [k] and [k + 1] denote subse-
quent nodes in the PWL. The lower solid thick line is the
current profile, and the upper line is the updated one, pass-
ing through P . We have chosen the bid adjustments �b[k]

and �b[k+1] to be in proportion to how close the new point
is to the node, i.e. α�b[k] = β �b[k+1]. In order to damp
any oscillatory behaviour, we scale the adjustment by a con-
stant factor λ ∈ [0, 1], so the new node points b̂[k] and b̂[k+1]

are:

b̂[k] = b[k] + λ�b[k] (2)

b̂[k+1] = b[k+1] + λ�b[k+1] (3)

4. RESULTS
In order to test our technique we compute the BNE of a sym-
metric auction for which the equilibrium can be computed.
Next a simple asymmetric auction that can be solved ana-
lytically serves as a second benchmark.

The algorithm described above was implemented in C++3

and the computations were performed on a 2.4 GHz Pen-
tium 4 running Linux 2.4. A typical calculation takes on
the order of a few minutes to half an hour to finish, de-
pending on the desired accuracy, resolution and number of
agents.

4.1 Symmetric Auction
We first consider a case with two agents, both having uni-
form valuation distributions in the range [0, 1]. The Bayes-
Nash equilibrium is for both to bid half their valuation. In
general, if there are N participating agents, each bids the
expected second price assuming his bid is the highest:

bi =
n − 1

n
vi (4)

The result for the two agents is shown in Figure 2 and took
approximately 3 minutes to compute. 1000 main cycles were

3The source code is available at
www.cs.ubc.ca/∼romanh/courses/cpsc532A/auction/
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Figure 2: The computed and analytic equilibrium
strategies for 2 players with valuations uniformly
drawn from [0, 1]. Both agents have the same strat-
egy profile.
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Figure 3: The computed and analytic equilibrium
strategies for 3 players with valuations uniformly
drawn from [0, 1].

required and we used 3000 samples for each utility compu-
tation. The best response at each cycle was selected from
50 bid samples. The temperature was decreased exponen-
tially with a half-life of 100 main cycles. The obtained result
agrees reasonably well with the true BNE. The results for
the three agent auction, using the same valuation distribu-
tion, is shown in Figure 3. The result shows good agreement
with the analytical strategy profile.

4.2 Asymmetric Auction
For the asymmetric auction, our test case has two agents
with valuations drawn from uniform distributions Ui that are
overlapping but with different bounds. We chose U1 = U[0,4/3]

and U1 = U[0,4/5]. The equilibrium in this case is for the
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Figure 4: Results for asymmetric auction using val-
uations drawn from U[0,4/3] and U[0,4/5]

agents to bid (see Appendix A)4:

b1(v1) = 1
v1

(
p

1 + v2
1 − 1)

b2(v2) = 1
v2

(1 − p
1 − v2

2)
(5)

The computed result after 5000 iterations is shown inFig-
ure 5. The result is less convincing than in the symmetric
case. Some of the data points do not line up with the equi-
librium, particularly at the plateau in agent 2’s bid function.
However, the general shape of the profile is found. It is possi-
ble that better convergence could be achieved by using more
iterations, or the speed of convergence may be improved by
optimising the parameters for the sampling.

4.3 Convergence
A large portion of the computational cost is computing the
expected utility for a given valuation and bid. Thus it is
important that the integral is computed with as few sam-
ples as possible. A Gaussian proposal distribution is used
for generating the samples, unless the target distribution is
uniform, in which case it is sampled directly. The choice of
proposal distribution can significantly affect the convergence
of the utility computation. This is illustrated in Figure 5.
The standard deviation decreases with the number of sam-
ples used to compute the utility. The rate of convergence
depends strongly on the width of the Gaussian proposal dis-
tribution. The standard deviation σ of the proposal distri-
bution is set to ρ(v − v)/2, where v and v − v define an
approximate lower and upper bound on the agents’ valua-
tions, i.e. the range in which the valuations fall with close
to 100% probability. The error drops sharply over the first
1000 samples and does not significantly improve after about
3000 samples. For the cases presented in this study we used
3000 samples to compute the utility. The computation was
done using single precision (32 bits). A comparison with
using double precision gave virtually identical results.

5. SUMMARY
We have proposed a method for finding Bayes-Nash equi-
libria. The technique uses Monte Carlo sampling and sim-

4This was an assignment problem in an Economics course
taught by John Rust at the University of Maryland.
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Figure 5: The standard deviation is plotted vs. the
number of samples used to compute the utility. The
rate of convergence depends on the shape of the
proposal distribution, in this case the width of the
gaussian. The agents’ valuations were drawn from a
Gaussian distribution with mean of 2 and a standard
deviation of 0.5.

ulated annealing. We were able to approximate the Bayes-
Nash equilibrium for a few select example cases. The re-
sults agree reasonably well with the known analytic solu-
tions. The current implementation requires on the order of
a few minutes up to about one half hour to generate a result
of the accuracy presented in this paper. Higher accuracy can
be obtained by using more samples at the cost of increased
running time.

The approach makes very few assumptions on the agents’
valuation distributions. Required are some functional form
and approximate bounds on the domain, in order to choose
an appropriate proposal distribution for sampling. In this
study we have only considered very simple cases and the em-
phasis was to demonstrate functionality of the algorithm. A
possible extension on this work could be to apply this tech-
nique to other auctions that drop some of the simplifying
assumptions outlined in Section 1. If the algorithm is ap-
plied to large auctions with many agents, it may take a long
time to reach an equilibrium. However, the algorithm ap-
pears to be easily parallelizable, which would allow it to
scale well with the number of bidders.
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APPENDIX
A. EQUILIBRIUM IN AN ASYMMETRIC

AUCTION
We want to show that the equilibrium bid functions for
two agents with valuations drawn from U1 = U[0,4/3] and
U1 = U[0,4/5] are given by Eqn. 5. The equilibrium bid func-
tion is such that it maximises the utility, so we have

b1(v) = arg max
b1

(v − b1)P (b2(v2) ≤ b1) (6)

= arg max
b1

(v − b1)P (v2 ≤ b−1
2 (b1) (7)

= arg max
b1

(v − b1)
5

4
b−1
2 (b1) (8)

where b−1
2 is the inverse bid function of agent 2. Similarly

for agent 2, we get

b2 = arg max
b2

(v − b2)
3

4
b−1
1 (b2) (9)

The inverse bid functions are

b−1
1 (b) =

2b

1 − b2
(10)

b−1
2 (b) =

2b

1 + b2
(11)

We now substitute the inverse bid function into Eqn. 8. The
maximum bid function is found by differentiating with re-
spect to the bid and equating to zero:

0 =
∂

∂b1

»
(b1 − v)

5

4

2b1

1 + b2
1

–
(12)

0 = vb2
1 − 2b1 − v (13)

b1 =
1

v1

„q
1 + v2

1 − 1

«
(14)

And similar for b2. Indeed we find that the best response is
given by Eqn. 5.


