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ABSTRACT
A proliferation of compact representation schemes have been
been proposed for various classes of games, along with ef-
ficient computations of solution concepts on such represen-
tations. The two main schemes have been Graphical games
[7] and Multi-agent Influence Diagrams [14]. However, vari-
ous other representations exist such as Game Networks [13]
and Action-Graph Games [2]. This work will present a gen-
eral overview of these different representation schemes and
concentrate on two ideas associated with them; what kind
of reasoning and visualization can be performed with each
scheme, and what sort of computations can be made on
them. We focus on correlated equilibria [1] calculations on
such representations. The results of [12, 11], which pro-
vided a general framework for correlated equilibria compu-
tations on various suitable compact representations, will be
extended to show a polynomial time algorithm to compute
correlated equilibria on Action-Graph Games.
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1. INTRODUCTION
Much interest has recently been taking place in the com-
puter science community, particular in the theory and arti-
ficial intelligence communities, on the intersection between
mathematical economics and computer science. Game The-
ory, a mathematical model of strategic interactions between

a group of self-interested agents, has been touted by some
[10] as the key idea in modelling computational problems
relating to the Internet, and situations in AI.

The predominant solution concept of a game is a Nash equi-
librium, a “stable point” of strategic choices such that all
the agents or players in the game have no incentive to devi-
ate from it. Interestingly, the complexity of computing Nash
equilbria is largely not understood, and is regarded by Pa-
padimitriou that “together with factoring, the complexity of
finding a Nash equilibrium is the most important concrete
open question on the boundary of P today” [10]. Indeed,
even for the case of a two-player game, no polynomial time
algorithm is known to compute a nash equilibrium, though
much work has recently taken place on trying to character-
ize its complexity [4, 12, 3] (see [9] for a general overview of
early algorithms).

There are, however, other notions of equilibrium in games.
Chief among these are correlated equilibria [1], a more gen-
eral form of Nash equilibrium that has a simpler form amenable
to linear programming. At a high level, a correlated equilib-
rium models the simplest form of cooperation that can arise
in a game via “shared randomness”, and has been argued
by many (see next section) that it is a more natural form of
equilibrium than that of Nash. In any case, the understand-
ing of its complexity is perhaps the first step in understand
that of the Nash equilibrium problem.

Consdier an n-player game, where each player has to make
a binary decision. Since we have to specify a utility for each
of the 2n possible outcomes of the game for each player, we
thus have n2n numbers already. Thus, without even starting
to compute or reason about this game, the “input” already
is exponential in the number of players, even for a game
with such a small number of actions per player. However,
these are very artificial constructs - in practice what sort of
games are there in “nature”, are they amenable to compact
representations?

There are various schemes for representing games, and the
situation is analogous to that of probabilistic graphical mod-
els (PGMs). A PGM is a graphical representation of a joint
probability distribution P (X1, X2, . . . , Xn), where the nodes
represent random variables, and edges between nodes repre-
sent whether two variables are independent of each other. If
each of the Xi’s are considered to be discrete random vari-



ables, then as in the game theoretic case, 2n numbers need
be provided and manipulated when performing calculations
and storage. In the directed graph case we have bayesian
networks (bayes nets), where a directed link from X to Y
means that Y is dependent on X, whereas in the undirected
case we have a markov network. Both representations have
revolutionized probability, statistics and machine learning in
that they brought seeming intractable representation prob-
lems within computational reach. There are several trends
from the PGM case that can be applied to the game the-
ory case. Firstly, there are independency structures which
can invariably be exploited in the real world. Although in
the worst case, PGM representations are computationally
intractable, in practice there is much structure in statistical
modelling. For example, for some r.v. X in the bayes net
case, we need only consider its probability conditioned on its
parents and their children, since it is statistically indepen-
dent from all other variables in the distribution. Likewise,
there exists a graphical game representation [7] which mod-
els the nodes of the graphs as players, and the edges as rela-
tionships between players. Thus the neighborhood of a node
(the player and everyone he is connected to) will have a local
game matrix specifying the utilities of their subgame. That
is, instead of representing a large matrix interaction of all
players, essentially modelling the case where everyone plays
against everyone else, we instead have local games where
players play only with their surrounding environment. This
representation method seems suitable for games with an ex-
tremely large amount of players - such as situations arising
on the internet.

In the following sections we define the notions of game and
correlated equilibrium, and study how we can represent games
as Graphical Games [7] and Action-Graph Games [2], and
show how to compute correlated equilibria on each repre-
sentation.

2. PRELIMINARIES
A game consists of n players, a collection S1, . . . , Sn finite
strategy sets (actions) and a collection of u1, . . . , un real-
valued utility functions, where ui : S1 × · · · × Sn 7→ R, ∀i.
An element s ∈ S =

Qn

i=1
Si is called a strategy profile,

where S is the set of all strategy profiles and is known as
the state space for the game. Let ns = maxi |Si|. Given a
strategy profile s we let si denote the strategy for player i
and s−i the n − 1 vector of strategies for the other n − 1
players. If we let φ(X) denote the set of all probability
distributions over some set X then we let Σi = φ(Si) be
the set of all mixed strategies for i and the set of all mixed
strategy profiles Σ =

Qn

i=1
Σi.

A correlated equilibrium (CE) is a distribution q on S1×· · ·×
Sn, such that for each player i and each pair of strategies
a, a′ in Si, so that si = a and s′i = a′,

X

s
−i

q(si, s−i)ui(si, s−i) ≥
X

s
−i

q(si, s−i)ui(s
′
i, s−i) (1)

One possible interpretation of correlated equilibrium involves
a third party trusted authority which knows the correlated
equilibrium q for some game G and picks or samples a strat-
egy profile s according to q, thereby “recommending” strat-
egy si to each player i. Each player is assumed to know only
their own recommended strategy, and not those of the other

players. A CE is thus acheived when no player has an incen-
tive to deviate from their recommended strategy, assuming
the other players will not deviate from their recommended
strategies either. If the CE q is a product distribution, that
is q =

Qn

i=1
pi, where pi ∈ Σi, then q, or rather all the pi’s,

constitute a Nash equilibrium (NE), implying that every NE
is also a CE. Thus we see that each player’s distribution pi

over his strategy set Si is independent of all other distri-
butions - there is no correlation between player’s decision
making.

For a motivating example [11], consider the chicken game
given in normal form,

Player 1

Player 2
S G

S 4, 4 1, 5
G 5, 1 0, 0

The game models the classic daredevil game of drivers speed-
ing on different streets towards some intersection, the S rep-
resenting stop and the G representing go. Obviously if both
choose G, the cars will crash resulting in 0 utility. If both
choose S both will equally lose face but still be alive to ex-
plain away the incident. The interesting decision involves
making the other driver exclusively lose face, resulting in
low utility for the shamed driver, but very high utility for
the victor. Any CE would be a probability distribution q
over S1 × S2 = {SS, SG, GS, GG}. Consider five such CE,

Distribution SS SG GS GG
qa 0 1 0 0
qb 0 0 1 0
qc 1/4 1/4 1/4 1/4
qd 0 1/2 1/2 0
qe 1/3 1/3 1/3 0

The first two CE qa and qb are pure strategy NE, while qc

is a mixed strategy NE where p1 = p2 = {1/2, 1/2}. The
last two qd and qe are not NE, and we can interpret qd as
being a traffic light - that is, a third party flips a fair coin
and depending on the outcome suggests a strategy to each
player, while qe happens to be the CE that maximizes the
expected sum of utilities for both players.

There is large body of literature advocating for a reexami-
nation of the prime importance of Nash equilibria as solu-
tion concepts. A common question cited is why any player
should assume the others are playing a Nash equilibria [5]. A
possible answer could be that the assumption about how the
other opponent plays could be the outcome of some learning
process. Such learning would take place in repeated games,
based on the history of past plays and using some sort of
forecast mechanism to predict opponent strategies. There
has been a large body of work on trying to find learning rules
in repeated games that converge to nash equilibria, however
such rules are complicated and even then convergence is not
assured. For example in fictitious play, each player mod-
els all the other players through a histogram of some fixed
mixed strategy, and plays best response to that. Fictitious
play will converge to NE in zero sum games, but not in the
general case. However, in another variant where a player



switches from the current strategy to another with proba-
bility proportional to the player’s regret for having played
the present strategy instead of the other in the past, does
converge to a CE in general [11, 5]. Also, it has been ar-
gued that NE are not compatible with the bayesian perspec-
tive. In bayesian models, each player would have a prior to
model each opponent - a NE suggests that each player should
choose a particular prior, prompting many, for example [5],
to suggest CE as an equilibrium concept compatible with
the bayesian perspective. This work on learning strategies
suggests that CE may be the more natural form of solution
concept to games.

3. REPRESENTATIONS
The following section will define and present examples of two
forms of compact representations, graphical games, which
represent nodes as players and edges as local interactions,
and action-graph games, which represent nodes as actions.

3.1 Graphical Games
A graphical game is a tuple (G, {M ′

i}), where G = (V, E) is
an undirected graph, where the vertices V represent players
and the edges E represent local interactions amongst play-
ers. The M ′

i are local payoff matrices defined for each node
on the graph - they intuitively model the local game that a
player i plays with all those in his neighborhood N(i). Thus
we see that if we let the maximum degree of local interaction
k = maxi |N(i)|, and assume binary actions, then our rep-
resentation size becomes O(n2k), that is, it is exponential
in the max degree of the graph. Note that when the graph
is a clique (that is, it is fully connected), we recover normal
form representation.

The problem of computing equilibria is still non-trivial, since
if the graph is connected, the strategy of a player “affects”
all other players (indirectly, via best response). If we let
X, Y be subsets of vertices (players) so that X and Y are
disconnected in G, then it’s obvious X, Y form independent
games. For every player i, if N(i) − i has their strategies
fixed, then two independent subgames arise - i by himself,
and all non-neighbors of i. In general, if we let SE be the
set of players that “seperates” the remaining set of players
into two non-empty subsets X and Y , then if we fix the
strategies in SE, the subgames and conditional equilibrium
for players in X is independent of players in Y .

For example, in the graphical game below, if we condition
(fix strategy) of player i so that SE = {i}, we get two
globally independent games, the unshaded nodes rooted at
A and the set of two unshaded subtrees rooted at B, C as
well as the two sub-local games each rooted at B and C.

A

i

B C

In [7] conditioning on seperation sets and dynamic program-

ming to implement message passing are used to give poly-
nomial approximation and exact algorithms to compute NE
in tree games.

In [6] an algorithm is given to compute correlated equilib-
ria in tree graphical games in polynomial time. We briefly
survey these results, as we introduce a more general method
based on linear programming in a later section. Two distri-
butions p and q over S1 × · · · × Sn are said to be expected
payoff equivalent (EPE) if the expected payoff to all players
is the same under both distributions. Also two distributions
p and q with respect to a graph G are local neighborhood
equivalent (LNE) if both have the same distribution over
joint actions of the local neighborhood for each player. Note
also that LNE implies EPE. For a graphical game, any CE
q can be represented in G as a distribution p such that p is
a local markov network (a special case of a general markov
network that uses the neighborhood of each node i instead
of the maximal cliques in the graph) in G and p, q are EPE.
A variant of linear programming is then used on the local
markov net to calculate a CE.

3.2 Action-Graph Games
An Action-Graph Game (AGG) [2] is a tuple (N, S, A, ν, u),
where N is the set of n agents, S = S1 × · · · × Sn, A =
Sn

i=1
Si is the set of distinct action choices, ν : S 7→ 2S is

the neighbor relation, and u : S × ∆ 7→ R, is the utility
function, where ∆ is the set of distributions of numbers of
agents over distinct actions - thus u depends only on the
number of agents who take neighbouring actions. All agents
have the same utility function. Explicity, given any action
a ∈ A and any pair of distributions D, D′ ∈ ∆, ∀a′ ∈ ν(a),

[D(a′) = D′(a′)] =⇒ [u(a, D) = u(a, D′)] (2)

That is, for any pair of players i, j (notice how the players
aren’t explicity represented) the utilities for i, j are inde-
pendent, as long as the actions chosen by them aren’t in
the same neighborhood. This is an example of context spe-
cific independence and can be contrasted with the graphical
model approach where independencies are implicit in the
graph structure. In AGG’s, depending on the action choices
of the players, independencies can emerge.

Graphical games can be converted to AGGs by replacing
each node i in the graphical game with a distinct cluster
of nodes representing all the actions in Si. For every edge
(i, j) in the graphical game, create edges for all si ∈ Si to
all sj ∈ Sj .

Consider the following graphical game consisting of three
players each with strategy set of cardinality three, such that
if we condition on player B, then player A’s utility is inde-
pendent of player C’s actions.

BA C



The corresponding AGG is then

A1

A2

A3

B1

B2

B3

C1

C2

C3

where we’eve replaced each player node with a set of actions.
Notice the graph is 3-partite. The above example shows a
case where the action sets for the three players are distinct.
When players have actions in common, even more compact
representations may arise. There are a number of games that
can be represented compactly in AGG’s but not in graphical
games, see [2].

3.3 Other Representations
Besides graphical games and action-graph games, much early
work has been on representations descended from influence
diagrams from decision theory. Multi-agent influence dia-
grams (MAIDs) [14] are types of graphs where nodes come
in three varieties: chance, decision, and utility variables.
Depending on the parents of each node, utilities and infor-
mation sets can be represented compactly. Game networks
[13] are another scheme where nodes represent actions and
two type of edges are allowed, representing causal and pref-
erential dependencies.

4. COMPUTING CE
Consider again the expression for correlated equilibria (1).
We have an expression for every player and every pair of
strategies, giving O(n · n2

s) such expressions. Rearranging
we get the following constraints,

X

s
−i

[ui(si, s−i) − ui(s
′
i, s−i)]q(si, s−i) ≥ 0 (3)

Since q is a probability distribution, represented here as a
vector of length |S|, and it is in a linear combination with
coefficients being the difference of two real valued utility
functions, the above can be interpreted as part of a linear
program,

max

|S|
X

j=1

qj (4)

Uq ≥ 0 (5)

q ≥ 0 (6)

where (5) is written in standard LP form, corresponding to

the fact that
P|S|

j=1
qj = 1 since q is a probability distribu-

tion, and U corresponds to (3).

Naively, we may think that by establishing an LP formula-
tion of the CE problem, we have found a polynomial solu-
tion to it, since any LP problem is solvable in polynomial
time. The subtlety here is that the input is exponential
- that is, though there are a polynomial number of con-
straints O(n · n2

s), there are an exponential number of vari-
ables |S| ∈ O(sn

n).

It seems we are at an impasse. However, in [11] the dual
of the above LP (the original LP hereafter denoted as the
primal),

UT y ≤ −1 (7)

y ≥ 0 (8)

is considered and is used to provide a constructive proof for
the existence of CE in every game (without relying, as is
usally the case, on Nash’s theorem to prove their existence).
The primal is conjectured to have a CE q with unbounded
feasibility region (it cannot be enclosed by a high-dimension
analogue of a circle), and thus by the fundamental duality
theorem of LP, the dual must be infeasible. A key lemma in
[11] states that ∃q so that q is a product distribution such
that qUT y = 0. So the constructive proof for the existence of
CE pits some polynomial LP algorithm such as the ellipsoid
algorithm on the dual. Since the dual now has a polynomial
number of variables and exponential number of contraints it
is gauranteed to run in polynomial time. After the ellipsoid
algorithm running on the dual terminates, we say at the Lth
step, we have L product distributions q1, . . . , qL such that,
for each 1 ≤ j ≤ L, qUT y ≤ −1 is voilated by yj . Thus
QUT y ≤ −1, where Q is the matrix whos rows are the qj ’s.
The dual to this program [UXT ]α ≥ 0, α ≥ 0 is unbounded.
This nonzero α vector will give us our final CE, which is
a convex combination of the qj product distributions that
satisfy the primal.

Thus to summarize, we run the ellipsoid algorithm on the
dual probram and extend the algorithm to M = poly(n ·n2

s)
steps (the exact expression is derived in [11]), leading to an
M × O(n · n2

s) infeasible system QUT y ≤ 1

2
, y ≥ 0 (the 1

2

here arising from a numerical error correction made in the
original proof in [11]). Call this program D′. The dual of
D′ is an O(n · n2

s) × M sytem UQT α ≥ 0, α ≥ 0. Call this
program P ′. Since QT α is a solution of the original primal,
it is a CE.

The subtlety here rests in one step - the construction of the
UQT needed for the solution of the P ′ program. The issue is
that U is a O(n ·n2

s)×O(sn
n) matrix, and QT is a O(sn

n)×M .
The product of these matrices will not take polynomial time
in general. At last however, we arrive to the subject of this
work - because for a certain class of compact games, this
product will be in polynomial time.

4.1 Succint Games
A succint game[11] G = (I, T, U) is defined in terms a set of
inputs I and two polynomial algorithms T and U . Concep-
tually T gives the type of the game, returning the number of
players as well as a n-tuple (t1, . . . , tn) which give the cardi-
nalities of the strategy set for each player, while U is a utility
function for the game. The I represents a compact represen-
tation of a games, such as a graphical game or action-graph
game. If n and the ti’s are bounded in |z|, z ∈ I , then the
game is said to be of polynomial type. Furthermore, we say
that G has the polynomial expectation property if there is a
polynomial algorithm E which, given an input representa-
tion, a player and a product distribution over S, returns the
expectation of the utility under the product distribution,

E(z, i, q) = Eq [ui(s), s ∈ S] (9)



In [11] it was shown that any representation scheme that can
be shown to be a succint game with polynomial type and
have the polynomial expectation property, then there exists
a polynomial time algorithm which computes a CE for it
(this polynomial expectation property is precisely what we
need to circumvent the above UQT matrix product, since
this product is in fact a calculation of the expected utility
given the product distributions in QT ). A number of games
were shown to have these properties, such as polymatrix
games, graphical games, hypergraphical games, congestion
games, local effect games, scheduling games, facility location
games, network design games, and symmetric games. Below
we give a description of how graphical games are succint
with the polynomial expectation property, and thereafter
extend the results to action-graph games.

4.1.1 Graphical Games
It is easy to see that graphical games are succinct. An input
z ∈ I is an undirected graph G and for each player i an
game matrix M ′

i explicity represented with players in N(i).
Assuming low maximum degree, T can be calculated in poly-
nomial time by going through each node in the graph and
keeping appropriate statistics, as can U in a similar fashion.

All such z thus have the polynomial expectation property
because given z, i, q1, . . . , qn, E will look at N(i) and go over
every strategy profile in the local matrix, ignoring the mixed
strategies not in N(i), thus giving a polynomial procedure.

4.1.2 Action-Graph Games
In [11] a subset of AGGs were shown to be succint and
have the polynomial expectation property, namely local ef-
fect games [8]. Again, the problem is that of computing

X

s

ui(s, D(s))q(s) (10)

where q is distributed according to some product distribu-
tion q1, . . . , qn. For each a ∈ A and each player i, as in [11]
we let wi(a) =

P

a∈s∈Si
qs

i , where qs
i is the i’s probability

for choosing strategy s. Thus wi(a) is the probability that
player i will choose a strategy containing a. This can be
done in polynomial time. Next, we would like to compute
the expected number of players who would choose strategy
a according to the qi’s. We can do this by dynamic pro-
gramming using the wi’s as explained in [11]. By linearity
of expectation we can combine everything to calculate the
expected utility above.

5. CONCLUSION
In this paper we have demonstrated the importance of rep-
resentation in reasoning and computing problems in game
theory. After first introducing correlated equilibria and jus-
tifying why it is important, we introduced two compact rep-
resentations - graphical games and action-graph games. We
then showed how to calculate correlated equilibria on both in
polynomial time, given certain instances of each representa-
tion. In the future more more work could be spent on trying
to elucidate the relationship between graphical games and
action graph games, for example algorithms to convert an
AGG to a graphical game. More work on studying what sort
of games are suitable for each representation can be made
to make it easier to determine which is more appropriate.
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