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ABSTRACT
In diverse fields such as computer science, economics and
psychology, bounded rationality has emerged as an impor-
tant research topic. Models which assume the existence of
perfectly rational agents seem inadequate for many real-
world problems where agents often lack perfect rationality.
Classes of imperfect rationality include the conditions of in-
complete knowledge, memory, information or computational
ability.

In this paper, bounded rationality is investigated in the con-
text of the Iterated Prisoner’s Dilemma (IPD). Six papers
are surveyed which address issues of optimality and coop-
eration in repeated games with applications to IPD, using
either a machine learning or game theory approach. Each
paper imposes some bound on players’ rationality; these ap-
proaches to bounding are classified and compared based on
their results and applicability.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
bounded rationality, Prisoner’s Dilemma

1. INTRODUCTION
In diverse fields such as computer science, economics and
psychology, bounded rationality has emerged as an impor-
tant research topic, because often models of perfectly ra-
tional agents are inadequate for real-world problems. As
[6] writes, the “ ‘perfect rational man’ paradigm” is dissat-
isfying because in real situations “decision makers are not
equally capable of analyzing a situation even when the in-
formation available to all of them is the same.”

Simon defines ‘substantive rationality’ as simply choosing
the best action and ‘procedural rationality’ as finding the

approximately best action [8]. With substantive rationality,
agents are assumed to have unlimited reasoning power, and
to be willing to use all of their reasoning resources to extract
more payoff, while under procedural rationality, agents ex-
pend due deliberation but have access only to limited reason-
ing power. In bounding rationality, the actions available to
agents are only procedurally rational. When players are thus
bounded, predictions about the analysis players engage in to
select and implement strategies is changed, and one can be-
gin to consider outcomes which were previously considered
irrational. [6] identifies several categories of bounded ratio-
nality, including limits of knowledge, memory, information
and computational ability.

The well-known game of Prisoner’s Dilemma is often used
as a test ground for models of bounded rationality. How-
ever, it is not just a toy setting. In real-world arenas as
diverse as politics and biology, Prisoner’s Dilemma is often
played out in ways not predicted by strictly rational mod-
els. Spawning sea bass learn to divide their sex roles and
U.S. Senators regularly trade votes, challenging the rational
model that predicts agents will never cooperate [1]. The It-
erated Prisoner’s Dilemma (IPD) is the playing of repeated
stage games of Prisoner’s Dilemma, where the number of
iterations may or may not be known by the players in ad-
vance. In this context, each player must adopt a strategy
to determine whether to cooperate or defect in each stage
game. Axelrod [1] has discussed that in IPD, there is an op-
portunity for players to settle on a cooperative equilibrium,
in which each player cooperates to ensure the most mutu-
ally satisfying outcome. In [1] he shows that cooperation is a
stable, rational outcome when: (1) the future is important;
either the chance of the game continuing is high or players
are not incorporating knowledge of the game’s endpoint into
their reasoning [6], (2) the difference in payoff between mu-
tual cooperation and mutual defection is sufficiently large,
and (3) players are adapting their strategies.

In this survey, different approaches to strategizing in IPD
are compared. All of the six papers surveyed use either a
machine learning or game theory approach and investigate
issues of optimality and cooperation in repeated games, with
applications to IPD. The papers all bound the rationality of
players in some way, and the authors investigate the effect of
bounded rationality on strategy selection and implementa-
tion. The various methods of bounding players’ rationality
are classified and compared based on their results and wider
applicability to other game theoretic situations.



Table 1: Prisoner’s Dilemma Payoff Matrix
C D

C R, R S, T
D T, S P, P

2. PRISONER’S DILEMMA
Table 1 is the normal form of the game of Prisoner’s Dilemma,
in which each agent has the choice to Cooperate (C) or De-
fect (D). Mutual cooperation yields each player the Reward
payoff (R), while mutual defection yields them both a Pun-
ishment payoff (P ). If one player cooperates and the the
other defects, the defector gains the Temptation payoff (T )
while the cooperator gets the Sucker’s payoff (S). Any assig-
nation of values to the payoffs preserves the game so long as
T > R > P > S and 2R > (T + S). The latter condition
assures that it is not rational for agents simply to alternate
taking advantage of each other.

In the single stage game, D is the dominant strategy for each
player, no matter what strategy the other player uses, and
hence {D,D} is the unique Nash Equilibrium. In the finitely
repeated game, {D,D} is still the only equilibrium, due to
backward induction. The other 3 outcomes are Pareto op-
timal, so the only sub-optimal outcome is the only equilib-
rium.

3. DEFINITIONS
In a 2-player game, a strategy for Player 1 is optimal if it is
the best strategy in response to a specific strategy of Player
2. A strategy is dominant if it is a player’s best strategy no
matter what the other player plays. For infinitely repeated
games, optimality and domination can be defined thusly:

Let πG
i be the payoff for player i in game G. Fix a strategy

σ2 in the set of Player 2’s strategies
PG

2 . Let G∞ be the

limit of the means game and Gδ be the discounted game.

For G∞: A strategy σ1 is optimal if for every strategy σ′1 ∈PG
1

πG∞
1 (σ1, σ2)− πG∞

1 (σ′1, σ2) ≥ 0. (1)

For Gδ: A strategy σ1 is optimal if for every strategy σ′1 ∈PG
1

lim inf
δ→1−

(πGδ

1 (σ1, σ2)− πGδ

1 (σ′1, σ2)) ≥ 0. (2)

A strategy is ε-optimal when 0 is replaced with -ε in the
above equations. A strategy σ1 is dominant if for every
strategy σ2 in

PG
2 , σ1 is optimal.

A cooperative equilibrium is a pair of strategies in Nash equi-
librium, such that, when played against each other, each
player receives an average payoff of R for each round [4].
An optimal equilibrium is an equilibrium for which there
are no other equilibria of greater value.

4. OVERVIEW OF PAPERS’ APPROACHES
The six papers examined in this survey can be classified
by two different approaches to implementing or choosing a
strategy in the IPD problem. In three papers focusing on
machine learning, [9] and [7] both present experimental re-
sults from applying machine learning to an agent’s choice of

strategy, while [2] focus on a theoretical analysis of reinforce-
ment learning. Both of the experimental papers present re-
inforcement learning algorithms for boundedly rational play-
ers which they hope will lead to optimal (or optimal with
respect to some bound) equilibria or an otherwise stable sit-
uation in which agents learn to cooperate. The remaining
set of papers surveyed, [3], [4] and [5], approach the IPD
problem from a strict game theory perspective, in which
players choose a strategy computationally. These papers fo-
cus on players with limits on their computational ability and
examine the complexity required to achieve various levels of
optimality and equilibria.

4.1 Machine Learning
In addition to its traditional assumption of rationality, game
theoretic analysis often assumes perfect knowledge of the
game being played. However, that may be unrealistic for
agents in real-world situations, where often there are too
many game elements to keep track of and even deliber-
ately hidden information about the game structure. Ma-
chine learning can be applied in situations where players are
not aware of: the structure of the game (including the other
player’s possible actions and the relationship between the
actions and payoffs); the other player’s decisions (at least
immediately), the other player’s payoffs, and the fact that
the player is in a game situation (i.e. that other agents’
actions are affecting the player’s outcomes) [9]. All of the
papers addressing machine learning incorporate some form
of this limited knowledge.

Both [9] and [7] present reinforcement learning algorithms
for IPD which they hope will lead to optimal (or optimal
with respect to some bound) play or agents learning to co-
operate. [2] examines reinforcement learning to try to estab-
lish theoretical guarantees about convergence to (optimal)
equilibria.

Stimpson, Goodrich and Walters [9] present a satisficing so-
lution, which imposes this bound on an agent’s rational-
ity: rather than choosing an optimal action which maxi-
mizes the agent’s utility, the agent simply chooses an ac-
tion whose payoff meets some aspiration level. As long as
an agent’s aspiration level is being met, he can play with-
out having to search for a maximal action. However, after
each play the user’s aspiration level is recalculated, as the
weighted average between the last payoff and the current
aspiration level. In their experiments, play between 2 sat-
isficing agents always led to stable outcomes (mutual coop-
eration, mutual defection, or a cycle of outcomes). They
also determined that mutual cooperation was most likely to
occur when agents’ initial aspirations were high, when the
cooperation payoff was significantly higher than the defect
payoff, when both players chose the same initial action, and
when the learning rate (the rate at which aspirations were
updated) was high.

Sandholm and Crites [7] also present a reinforcement learn-
ing algorithm. The authors used Q-learning, where the Q-
value of a state-action pair Q(s, a) is updated when that ac-
tion is taken from that state, based on the immediate payoff
of the action, the maximum discounted payoff possible from
the next state and the learning rate. To ensure that every
action is eventually tried from each state while actions with



high value estimates are preferred, an exploration mecha-
nism is introduced into Q-learning. Here the authors chose
the Boltzmann distribution, which includes a temperature
parameter allowing for annealing. Q-learning is guaranteed
to converge to correct Q-values given several constraints: the
environment must be stationary and Markovian, Q-values
are stored in a lookup table, every state-action pair contin-
ues to be visited, and the learning rate is decreased appropri-
ately over time [7]. However, in the multiagent setting these
guarantees do not hold because the other agent’s state can’t
be observed and because the environment is not stationary
when the other agent is learning or otherwise adapting. To
test approaches to the multiagent setting, the authors ran
experiments playing Q-learners against unknown opponents
playing Tit-for-Tat and other Q-learners, varying 3 factors
which bounded the rationality of the agents: the length of
the history the agent could maintain, lookup tables vs. re-
current neural networks, and the length of the exploration
schedule. Every Q-learner learned to play optimally against
Tit-for-Tat, but against other Q-learners the agents with
the best results had longer history windows, lookup table
memories and longer exploration schedules.

Though Claus and Boutilier [2] focus on common interest re-
peated games, their interest is in investigating reinforcement
learning as a means for teaching coordination to agents in
any sequential decision problem. They first distinguish inde-
pendent learners, who ignore the existence of other agents,
and joint action learners, who learn the value of both their
own actions and those of other agents. Reinforcement learn-
ing is introduced when agents are also unaware of the re-
wards which result from joint actions. The authors chose
as their algorithm Q-learning with a Boltzmann distribu-
tion, as in [7]. They identify 4 conditions required to ensure
convergence to equilibria:

• The learning rate λ decreases over time such that
Pt

λ=0 λ =

∞ and
Pt

λ=0 λ2 < ∞.

• Each agent samples each of its actions infinitely often.

• The probability P i
t (a) of agent i choosing action a is

nonzero.

• Each agent’s exploration is exploitive. In other words,
limt→∞ P i

t (Xt) = 0, where Xt is a random variable
denoting the event that some non-optimal action was
taken based on i’s estimated values at time t.

However, practical considerations mean that convergence
may take a very long time, due to factors such as decay-
ing exploration and the number of observations required to
shift away from a strategy with much evidence. There also
is no guarantee that this method will converge on optimal
equilibria. 3 strategies for biasing a joint action learner’s
search toward optimal equilibria are explored, using myopic
heuristics, which focus only on the current state.

4.2 Game Theory
In the three game theory papers, bounded rationality is ex-
plored for its guarantees on both optimality and coopera-
tion. Each paper models agents’ bounds on rationality by
restricting their computational ability. [5] attempt to model

a human level of rationality with finite state automata, using
the number of states as a measure of complexity. [3] model
situations in which computers are used in decision making,
and thus compare the sets of strategies returned by a range
of computational devices, from fully rational agents to Tur-
ing machines to finite automata. Finally [4] investigate a
minimal bound on agents’ computational ability which still
enables cooperative behavior, as well as a computationally
tractable model in which sub-optimal play may be a player’s
optimal solution.

Papadimitriou and Yannakakis [5] investigate the achieve-
ment of equilibria given varying levels of complexity in strat-
egy implementation and strategy selection. For a finite
automaton implementing a strategy, the complexity of the
strategy can be represented as the amount of memory needed,
or the number of states in the automaton. A previous re-
sult by Myhill-Nerode held that for a pair of strategies of
size sI(n), sII(n) < n and ≥ 2 in an n-round Prisoner’s
Dilemma neither automaton is capable of backward induc-
tion because neither can count to n and thus there exists a
cooperative equilibrium. The finite automaton which exe-
cutes the Tit-for-Tat strategy has only 2 states and so sat-
isfies this condition. The authors of [5] wished to establish
other, less-restrictive bounds on memory which would still
foster cooperative behavior. They prove that while a pair
of strategies of size sI(n), sII(n) > 2n still results in mu-
tual defection by backward induction, for all subexponential
complexities players can achieve equilibria arbitrarily close
to the cooperative payoff.

Theorem 1 (Papadimitriou and Yannakakis). For ε >
0, let cε = ε/6(1 + ε). For every ε > 0, n the n-round Pris-
oner’s Dilemma played by automata with sizes bounded by
sI(n), sII(n), if at least one of the bounds is smaller than
2cεn, then there is a (mixed) equilibrium with average payoff
for each player at least R-ε.

If both players’ strategies are bounded subexponentially, [5]
prove that there is a (mixed) equilibrium with an average
payoff for each player arbitrarily close to any Pareto opti-
mal outcome with value greater than P . They also prove a
generalization of these results to other repeated games and
begin an investigation of the complexity of strategy selection
in general games. They discover that they can classify the
complexity for the problems of: (a) choosing a best response;
(b) whether a game has a pure equilibrium; (c) whether a
given payoff can be achieved in mixed equilibrium, given
a zero-sum game; and (d) whether a given payoff can be
achieved in mixed equilibria in a general game. These prob-
lems are members of the complexity classes NP,

Pp
2, EXP,

and NEXP, respectively.

Instead of attempting to model more ‘human’ levels of ratio-
nality with finite automata, Fortnow and Whang [3] model
situations in which computers are used in decision mak-
ing. They compare the sets of strategies returned by a
range of computational devices and prove that certain re-
lationships of optimality and domination will hold when-
ever certain computational devices are used. The sets of
strategies under consideration are: (a) rational strategies,
or the set of all possible strategies which a rational player



can achieve; (b) recursive strategies, which are the strategies
which can be computed by a Turing machine that halts on
all inputs; (c) polynomial-time strategies, which are the set
of all strategies computed by a polynomial-time Turing ma-
chine; and (d) regular strategies, which are those strategies
which can by realizable by finite automata. By definition,
(a) ⊃ (b) ⊃ (c) ⊃ (d).

The authors introduce 2 new variations on the definitions
of optimality and domination. A strategy for player i is
eventually optimal if, after some grace period in which the
other player’s strategy can be learned, i’s strategy is the
optimal strategy among all strategies i could play given the
history of the interaction so far. A strategy for player i is
eventually dominant if it is eventually optimal against every
strategy of the other player. They prove that, for any game,
there is a recursive strategy which is eventually dominant
for the class of rational strategies against regular strategies.
However, for Prisoner’s Dilemma, they prove that the lower
bound for the number of rounds required for any strategy
to become eventually dominant over regular strategies is ex-
ponential in the number of states in the minimal automa-
ton that implements the regular strategy. For comparison,
the result for the game of Matching Pennies is much bet-
ter: there is a polynomial-time strategy that dominates all
finite automata and converges in a polynomial number of
rounds. The authors also found that polynomial-time strate-
gies are quite robust against even rational strategies. They
prove that in Prisoner’s Dilemma there is a polynomial-time
strategy against which there is no eventually optimal ratio-
nal strategy. There is also a polynomial-time strategy with
an optimal rational response but which no Turing machine
guaranteed to halt can find (no recursive strategy can find
even an ε-optimal response).

Mor and Rosenschein [4] implemented the most minimal
bound on agents’ rationality, by simply limiting the com-
putation time allotted to each agent. To begin, agents are
restricted to the Finite Time Repeated Prisoner’s Dilemma
(FTPD) shown in Table 2, where for N clock ticks, players
each play an action at each clock tick, and both score 0 if one
player waits (doesn’t choose an action). This design ensures
that two unboundedly rational players will want to play each
time (because W is dominated by D for both players). If a
complexity bound is placed on both players’ rationality such
that any ”compare” action takes the player at least one clock
tick, the authors present a proof that there is a cooperative
equilibrium in every FTPD, as long as R > 0. The authors
prove that complexity bound is a weaker bound than being
restricted to Turing machines. The authors go on to pro-
pose a further tweak to the game: allowing a player to opt
out (stop playing against the current opponent) if the oppo-
nent is waiting or not cooperating, and be rematched with
another opponent. They prove that opting out is a rational
strategy, so long as there is a positive probability of being
rematched with a cooperative opponent, and rematching is
instantaneous. The authors also consider a model for cases
when maximizing expected payoff is too expensive compu-
tationally or a player lacks complete knowledge of the other
players in the population. In these cases of bounded ratio-
nality, players can pursue a satisfying strategy in the FTPD
with opt-out, where instead of maximizing expected pay-
off, players maximize their security level (the lowest payoff

Table 2: Finite Time Prisoner’s Dilemma Payoff Ma-
trix

C D W
C R, R S, T 0
D T, S P, P 0
W 0 0 H ≤ 0

possible with a given strategy). They prove that the satisfy-
ing payoff approaches the maximizing payoff as the number
of alternative cooperative opponents and the length of the
game increase.

5. COMPARISON
The approaches of these papers represent only a small por-
tion of the work on bounded rationality. Therefore we can-
not draw any conclusions about their comprehensiveness in
terms of covering the current state of the art. However,
we can clarify what the methods surveyed contribute to our
understanding of bounded rationality.

5.1 Methods
The three machine learning approaches differ in that [9] and
[7] offer only empirical analysis, while [2] investigates theo-
retical guarantees in addition to presenting empirical results.
All three of the machine learning algorithms are robust and
achieve stable outcomes, but are not guaranteed to converge
to optimal equilibria. Further, it is not clear whether the
learning algorithms presented are meant to represent any
particular class of ‘real-world’ agent.

The game theoretic papers in which computational ability
is bounded offer theoretical certainties, though it is often
unclear what types of agents are modeled by a particular
computational device. One important thread of comparison
among the papers is the focus on optimality and coopera-
tion. In Prisoner’s Dilemma, these can coincide, as cooper-
ative equilibrium is the optimal equilibrium, but for general
games this is not always the case. [3] look only at optimal-
ity and domination without considering cooperation, while
the machine learning papers [9] and [7] look only for coop-
eration/equilibria. The remaining papers sought to balance
these two concerns.

5.2 Bounds on Rationality
In each paper, some bound on players’ rationality is ex-
plored. These can be generally categorized under Rubin-
stein’s classes of bounded rationality: incomplete knowl-
edge, memory, information and computational ability.

Rubinstein [6] identifies three costs on information: acquisi-
tion, memory and communication. Agents may be unwilling
or unable to perform acquisition operations, store informa-
tion in memory or participate in the process of communi-
cation necessary to gain information about their situation.
The conditions in [2] bound players’ information, by explor-
ing the effects of ignoring or being unaware of other agents,
being unaware of the actions of the other agents, and be-
ing unaware of the rewards associated with various actions.
Their results show that reinforcement learning allows the
costs of information gain to be minimized, while still con-
verging to equilibria, though often at the expense of time.



[9]’s satisficing solution also imposes a bound on informa-
tion, or rather allows a bound to be present; agents do not
need to be aware of any elements of the game structure,
other than being able to observe a payoff and and associate
it with his last action.

Rubinstein [6] describes memory as the ability to record and
retain information about changes to the game structure. It
can also generally be thought of as the difference between
perfect and imperfect recall. [7] bound the players’ memory
in Q-learning, experimenting with changes to: the length of
the history the agent could maintain, lookup tables vs. re-
current neural networks, and the length of the exploration
schedule. [5]’s bound on the number of states in finite au-
tomata is also a bound on the agents’ memory, in that with
fewer states agents are unable to represent all the possible
states of the game, and so distinct histories may be viewed
as the same.

Four papers impose some bound on computational ability.
Rubinstein [6] characterizes this bound on complexity as
an agent’s trade-off between choosing a good strategy and
keeping his computation as simple as possible. [9] present
a satisficing solution; rather than choosing an optimal ac-
tion which maximizes the agent’s utility, the agent simply
chooses an action whose payoff meets some aspiration level,
thereby bounding the amount of computation required to
choose a strategy. [5] present results when players’ compu-
tation is limited to a finite state automaton, where the com-
plexity can be directly attributed to the number of states in
the machine. [3] compare approaches in which one or both
players use a range of computation to compute sets of strate-
gies, from fully rational agents to Turing machines which
halt on all inputs, to polynomial-time Turing machines, to
finite automata. [4] measured their bound as simply the
computation time allotted to each agent, which they proved
was equivalent to or even less restrictive than bounding com-
putation to a Turing machine.

A final bound on rationality which Rubinstein [6] discusses
is limited foresight. Foresight is the process of predicting
the possible future states of a game in order to choose a
strategy, thus it is really a combination of memory and
computational ability. Backward induction is an example
of using foresight. However, as we have seen and as is ap-
parent in complex games like chess, backward induction is
not always possible due to limits on either memory or com-
putational ability. The extent of an agent’s foresight can
vary along three dimensions: the depth of their inquiry; the
quality of the sample scenarios they select, if they must only
model certain possible futures; and evaluation of the future
moves they have generated [6]. In experiments, humans
have demonstrated significant differences in their perfor-
mance along these dimensions, as well as differences in their
performance in different domains. [2]’s experiments with
“myopic heuristics,” in which agents consider only their cur-
rent state and ignore future rewards, represent a very limited
foresight. Similarly [5] discusses finite automata bounded to
sizes smaller than the number of rounds, which cannot per-
form backward induction. Both of these papers present a
simple example of limited foresight, in which agents are lim-
ited only along the dimension of depth.

6. RESULTS
6.1 Extent of Bounding
Because there are various means of bounding rationality,
it is difficult to rate approaches for their ‘level’ of bound-
ing. However, it seems clear that [4] impose the least con-
straint on rationality, as they prove that their approach is
at least as rational as any Turing machine. [5] and [9] seem
to impose the greatest constraints among approaches which
bound agents’ computational ability. The satisficing solu-
tion in [9] clearly requires the least amount of computa-
tion, as agents do not engage in any computation of sets of
strategies and have only two calculations to perform at each
round. Among the finite automata presented in [5] there
are also very simplistic agents discussed, including the 2-
state finite automaton which plays Tit-for-Tat, though the
authors focus on more complex finite automata and even
explore strategy selection in finite automata. However, as
is demonstrated in [3], the set of strategies realizable by
finite automata is very limited compared to other computa-
tional devices. It seems fair to say that the lower bound on
real-world computational ability is very close to the lower
bounds presented in these papers, as an agent must be able
to perform at least one compare operation to be considered
rational.

It seems also that the game consequences of different bounds
vary with the extent of bounding. [3] prove that the extent of
bounding on an agent’s computational ability can drastically
change the sets of strategies which can respond optimally
or dominantly. Similarly, [5] show that changes to agents’
computational complexity can significantly alter the space
of possible outcomes.

6.2 Applications
We have seen many different methods to achieve coopera-
tion or optimality in the Iterated Prisoner’s Dilemma and
other repeated games, and in each paper some rationale is
implicit or provided to explain how this method of bound-
ing rationality applies to real problem-solving. In the more
complex approaches such as [3] and [4] it is clear that the
results apply to situations in which computers of varying
capabilities will be making decisions. The remaining pa-
pers, and [4], make claims about how little computation is
required to guarantee their results. However, the question
remains ‘which bounds on rationality really correspond to
true human or other real-world forms of rationality’?

Simon [8] discusses one real problem in limiting bounded
memory. In human cognition, the limits on memory are
similar to the models presented in [7] and [5] because of
the fact that we have limited short-term memory space and
also have limits on how quickly and in what manner we
retrieve stored data. However, those constraints don’t cap-
ture our ability to create “templates” that allow us faster
lookup if the the data is in a familiar form, nor do any of
these approaches capture the algorithms humans learn to
solve problems and even remember or recognize items bet-
ter. As discussed in both [8] and [6], the foresight performed
by expert chess players indicates that they have learned to
recognize certain arrangements of pieces immediately, and
can even recognize board arrangements which have evolved
from these templates or ‘chunks’ of memory. Grandmaster
chess players also have very evolved heuristics for choosing



which future moves to project, which most likely are specific
to the domain. There are similar corollaries for experts in
other domains. None of the approaches presented for learn-
ing or computation take the formation of these templates or
heuristics into account, though most of the models do not
preclude the possibility of these memory features.

In addition, it is not clear exactly how complex human com-
putation is, even given batteries of experiments [8]. Simon
[8] has presented evidence that any agent (machine or bi-
ological) which performs computation must perform it in
approximately the same way, but little evidence has been
presented to indicate where on the spectrum of computa-
tional devices biological agents might fall. Further, Mor [4]
points out that other approaches which involve bounds on
computational ability, including [5] and [3], ”exhaust” the
machines, meaning that the game patterns produced are
so complex that the machines must use all their computa-
tional power in order to participate. These computationally-
intensive versions of game play and intricate rules do not
seem to correspond to the natural occurrences of Prisoner’s
Dilemma cited by [1] and [8].

To strict psychological and biological discussions of human
cognitive models, game theory probably has little to con-
tribute, but it seems that some of these game theoretic mod-
els, both for machine learning and computational devices,
could be pitted against humans to try to tease out similari-
ties and differences in their reasoning processes. In addition
to the discoveries presented here, a greater understanding
and finer granularity of the differences among computational
models would aid this process.

7. CONCLUSION
Bounded rationality has become an important research topic
in many fields, because models of perfectly rational agents
are often dissatisfying when applied to real-world problems.
‘Procedural rationality’, in which agents have only limited
reasoning power, seems more appropriate for models in a
large range of fields, from computer science to economics to
biology and psychology.

Prisoner’s Dilemma is a rich testing ground for models of
bounded rationality. The results presented here utilize this
deceptively simple example as an expressive mechanism for
exploring limits on agents in a multitude of game situations.
The two main approaches discussed here, machine learning
and limits on computational abilities, have provided insights
into the theoretical guarantees of various forms and levels
of bounded rationality, including computational bounds un-
der which optimal outcome and cooperative equilibrium are
achieveable.

However, computational models of bounded rationality still
fall short of accurate models of real-world bounded ratio-
nality. There are many possibilities for bounding rationality
within the classes identified by [6], which include limits on
knowledge, memory, information and computational ability.
It seems likely also that other forms of bounding or refine-
ments to these will be discovered with more human experi-
mentation. The papers surveyed here are excellent examples
of the contribution computation and game theory can make
to the classification of bounded rationality in machines and

biological agents. Hopefully, these theoretical insights can
be combined with psychological and economics experiments
to determine which models most closely approximate our
world and the games we play.
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