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ABSTRACT
I consider the problems of peer-to-peer file sharing networks,
such as freeriding, whitewashing and traitors. In respect to
this I attempt to analyse ideas from Evolutionary Game
Theory and apply them here, drawing upon recent work
from Feldman et al.[2][3]. Evolutionary Game Theory is
applicable since it deals with strategies in large populations.
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1. INTRODUCTION
Peer-to-Peer (P2P) file sharing systems allow computer users
to share files with each other around the world without
ever meeting or interacting with the people they are sharing
with. This has been highly publicised in recent years first for
those who share music files and now those who share movies,
thanks to increases in network bandwidth. An example of
this would be Napster, shut down for illegal copyright issues
and now a legal download site, or more recently BitTorrent
(which uses a central server called a tracker which coordi-
nates the actions of the peers, and seeds that at any time
have a complete copy of the file to upload.)

In these systems the file service is performed by the sys-
tems users. In order to persuade users to upload their files
to other users instead of just downloading many have to be
given some sort of incentive. Some systems require a high
reputation to maximise download potential, and a high rep-
utation is achieved by the amount of uploading that the user
has done. However with a lot of systems this can be circum-
vented by hacking the client program to stop uploading, or
in cases where the option is voluntary, then the user chooses
to switch the option off. This is known as the free-rider
problem and was studied before P2P systems.

Economics and Game Theory can be applied to this prob-
lem as it is one of shared resources and payoffs to users.
Game Theory has emerged in the last 60 or so years as a
powerful challenger to the conventional methods of studying
economics. The main purpose is instead of considering situ-
ations where agents are making decisions based on reactions

to prices (dead variables), to think about strategic decisions
based on reactions to other agents actions (live variables).
A strategy can either be pure, as in to always play a par-
ticular move, or mixed, to play different moves over some
probability distribution.

Various equilibrium concepts can arise from this analysis,
such as the Nash Equilibrium, which is reached when each
agents action is a best response to every other agents actions.
These concepts are important when analyzing games, find-
ing a stable point within them where all agents are happy
and do not wish to deviate from their current strategy.

Evolutionary Game Theory has been around since the 1970s
when John Maynard-Smith [5] and George R. Price related
the concepts of Nash Equilibria in an evolutionary envi-
ronment. A strategy is an Evolutionarily Stable Strategy
(ESS) if a population of individuals homogenously playing
this strategy is able to outperform and eliminate a small
amount of any mutant strategy introduced into the popula-
tion.

There are a few principle examples of how agents react with
each other in large populations. [1] Firstly we have the Pris-
oners Dilemma. According to rational reasoning an indi-
vidual agent should always defect against the agent he is
playing, as it will result in a better payoff for them. How-
ever, if the game is repeated a strategy can be adopted,
such as Tit-for-Tat, where the fear of retaliation in the fu-
ture causes agents to retaliate in the present. In well-mixed
populations, the fitness of agents can be measured the av-
erage payoff over a certain number of iterations, and in this
case the co-operators are doomed.

Another example is the Snowdrift (Hawk-Dove) game. In
this game two agents can either stay in the warm car, or
shovel the snowdrift. If either or both shovels then they
both get home, else they wait till spring the snow to thaw.
This is different to Prisoners Dilemma as this time each
agents best action depends on the other agents behaviour.
In this case co-operators and defectors can co-exist.

I will give an introduction to Evolutionary Game Theory
and then analyse how this could be applied to peer-to-peer
systems.



2. BACKGROUND
[4] Golle et al. begin by characterizing the problem in a more
formal game-theoretic manner. The file sharing scenario is
modeled by a game that takes place within a defined time
period. n agents participate in the system and are denoted
a1, ..., an, and each agent ais strategy, denoted Si = (σ, δ),
consists of 2 independent actions:

1. Sharing: Agents select what proportion of files to
share. Sharing takes three levels: σ0 (none), σ1 (mod-
erate) or σ2 (heavy).

2. Downloading: Each agent must also determine how
much to download the network in each period. Models
are downloaded with agents choosing between three
levels: δ0 (none), δ1 (moderate) or δ2 (heavy).

Each agent has a utility function which is based on a number
of factors, such as Amount Downloaded (agents get happier
the more they download) and Bandwidth Used (a cost to
agents associated with uploading files to the network), there
are others. Each agent also has a quasilinear utility func-
tion, meaning that each of the factors above can be mapped
onto a dollar value for that agent, be it positive or negative,
creating a total utility value for that agent. Agents are sim-
plified to have the same utility function for each of the five
factors described, so that agents can be considered to have
the same type, and all agents are deemed to be economically
rational.

The idea is to find some sort of equilibrium which satisfies
the goals that individual agents want to achieve whilst also
satisfying the group of agents in a maximal way. The joint
strategies of all agents is denoted Σ = {S1...Sn}, and for
example, A Nash Equilibrium over these strategies would
occur if every agent would be strictly worse off should he
change his strategy.

Several alternative mechanisms are discussed:

1. Micro-Payment Mechanisms: This approach at-
tempts to balance the system with what the agents
take and contribute, by rewarding the user for every
upload and charging for every download. The number
of files a user downloads δ is tracked by the central
server and also the number of files uploaded v. At the
end of each period, each user is charged an amount
C = g(δ − v). However the paper suggests that users
dislike micro payments as it forces each download to
be an individual buying decision.

2. Quantized Micro-Payment Mechanisms: This is
similar to the above except that the user purchases
a block b of files. However there are problems in this
model where agents could gain via collusion, i.e. down-
loading between themselves for profit.

3. Rewards for Sharing: This approach continues to
penalize downloads but rewards agents based on the
proportion of material they have available for shar-
ing rather than the number of uploads they provide.
This can be done via a point system, where a user

gets points by purchasing them with money or by pro-
viding contributions to the network. However the pa-
per states that the drawback with point systems is
that they result in a degenerate equilibria in which all
agents download at the highest level and share nothing
at all (although as shown by the original Napster this
does not necessarily mean that it will happen.) Also,
it is difficult to give points for files that are available,
when an agent may attempt to cheat by claiming to be
unavailable as soon as another agent chooses to down-
load from them.

Feldman et al. [2] discusses the problem of free-riding, and
attempts to solve it through the use of Generalized Prison-
ers Dilemma (GPD). It states that P2P systems impose a
unique set of challenges, such as high populations (100000+)
with high turnover, asymmetry of interest (each user wants
something from someone else in a cycle), and zero-cost iden-
tity (the ability to change identity at no cost.) To address
this they introduce scalable and robust techniques, and a
new decision function they call Reciprocative. They have
five different tradeoffs:

1. Discriminating Server Selection: Cooperation requires
familiarity between entities, but the high turnover and
populations make this unlikely, so each peer will keep
a private history of actions, and discriminating server
selection will be used.

2. Shared History: This results in a higher level coopera-
tion than private history, but the cost is a distributed
infrastructure to store it.

3. Maxflow-based Subjective Recognition: Shared his-
tory makes it possible to collude. The paper shows
that a maxflow algorithm that computes reputation
subjectively promotes cooperation in spite of collusion
between a third of the population.

4. Adaptive Stranger Policy: Zero-cost identities can be
tackled by treating strangers based on the history of
other strangers.

5. Short-term History: History means that a previously
well behaved peer could turn traitor and exploit other
peers, so histories are kept short-term.

GPD provides the general form for an asymmetric payoff
matrix that preserves the dilemma of the problem. It has the
properties that mutual cooperation leads to higher payoffs
than mutual defection or one player defecting, but defection
weakly dominates at the individual level for the player who
decides whether to cooperate or defect.

In each round each agent plays one game as a client and one
as a server, and at the end of each round the player may
either mutate to a new strategy, learn, turnover (leave the
system), or stay the same. If a player mutates then they
switch to a randomly picked strategy. If they learn, they
switches to a strategy they believe will bring a higher score,
and if they keep the same name they will be identified as a
traitor. If a player suffers turnover, they leave the system



and are replaced by a newcomer who uses the same strategy
as the exiting player.

Each agent has to decide how to act and this is where the
Reciprocative function comes into play. A simple decision
might be to 100% cooperate, a naive choice by a user who
does not realise they are being exploited. The probability
that a Reciprocative player cooperates with a peer is a func-
tion of its normalized generosity, i.e. the benefit an agent
has provided compared to what it has consumed. It uses its
own generosity when judging other agents generosity to en-
sure Reciprocative agents do not defect on each other. There
are further details of the incentive schemes discussed, and
also types of cheating or attacks that may occur. To con-
clude the paper states that it tackled the problems of P2P
systems and that its Reciprocative decision function results
in cooperative behaviour and improves overall system per-
formance.

They conclude that their Reciprocative function supports
cooperative behaviour and improves overall system perfor-
mance, and that the usage of Shared History and Discrim-
inating Server Selection can address the challenges of large
population size, high turnover and asymmetry of interest.

Feldman et al. [3] also consider the problem of whitewashing,
where users leave the system and rejoin with new identities
in order to avoid reputational penalties. Each agent has a
type. When generosity (the average type) is low then inter-
vention is required to keep the system running. Each decides
whether to contribute or free-ride based on the relationship
between the cost of contribution and their type. If x is the
fraction of users who contribute, then a rational user of type
ti will contribute if:

1/x < ti

With too many non-contributors the system will collapse.
They go on to model a mechanism for the penalty imposed
on newcomers which only degrades performance when turnover
is high.

Wang and Li [9] attempt to use a Cournot Oligopoly for
the same problem, and Ranganathan et al. [8] use a Multi-
Person Prisoners Dilemma approach. Nowak and Sigmund
[6] use Evolutionary Game Theory whilst scoring images.

3. EVOLUTIONARY GAME THEORY
Evolutionary Game Theory can be described, at least at a
basic level, as a series of 1-on-1 encounters between players
in a game. Maynard Smith termed this as pairwise com-
petition. The players in the game become the strategies
themselves, and then the game considers the overall fitness
effects on each strategy after all possible contests are played,
in proportion to their likelihood. Each of these strategies are
attempts at modelling behaviour in biological populations
but the ideas can also be used here.

There can be contests between individuals using the same
behavioural strategy or between individuals of different strate-
gies. We need to work out the fitness of each actor in the
game. To do this we need to include the value of the re-
source, the chances of winning the resource, the chance of

a loss and the costs of winning or losing. Benefits are as-
signed by using a relative but yet arbitrary scale of value, a
common currency.

From this payoffs have the general form:

Payoff(to 1 vs. 2) = chance of win * (resource value - cost
of win) + chance of loss * cost of loss

However fitness also depends on the frequency of other be-
haviours in the game. If certain behaviour is infrequent
within the game then it is less likely that another agent will
interact with that type of behaviour, so that behaviour has
less impact on the overall fitness for that behaviour.

If fitness is denoted by W and expected fitness by E, over-
all fitness to a particular strategist in a particular type of
contest is

Change in W(S1) = E(to S1 vs S2) * freq(encounter)

3.1 Evolutionary Stable Strategies
Game Theory can be used to predict situations where:

1. one behaviour is more fit than all known alternatives1

2. a specific mix of behaviours where none are more fit
than the other

This results in evolutionary stasis ; there is no change in rel-
ative frequency of strategies over time, it is an evolutionary
stable strategy (ESS).

1. Pure ESS: where one strategy totally out competes
all the others. Regardless of its frequency it is always
more fit than any other known alternative, and it is im-
mune to invasion from other known strategies. Thus
any alternative that appears by mutation or immigra-
tion will not be able to increase and will become ex-
tinct.

2. Mixed ESS: where two strategies permanently co-
exist. This could be achieved by individuals playing
one strategy all the time where the two strategies are
at equilibrial frequencies. Alternatively, it could be
caused by everyone playing a mixed strategy where
each of the behaviours is performed at the equilibrial
frequencies.

Let us consider an example. Figure 1 shows the payoffs
of two strategies, A and B. The population begins entirely
of individuals who use strategy A. If a is the frequency of
strategy A and b is the frequency of strategy B then

• A vs A occurs at the frequency a2

• A vs B occurs at the frequency 2ab

1When a strategy is said to be uninvadable, it is with relation
to known strategies. It is potentially vulnerable to a new
strategy that may come along.



Figure 1: Payoffs for A versus B strategies.

• B vs B occurs at the frequency b2

So from figure 1 we can see that when A plays A the payoff is
0. If a single invader of type B appears, all of his interactions
will be with players of strategy A and the payoff will be of
-0.5 (i.e. the B strategist will lose fitness as a result of this
interaction.) So in this case B cannot invade A. This can be
formalized as

E(A, A) > E(B, A)

which means that A is stable against B, a Pure ESS vs B.
If this rule was not true but

E(A, A) = E(B, A) and E(A, B) > E(B, B)

is then it would also be a Pure ESS. We can also have Mixed
ESS, where two strategies have an intermediate point where
both have the same fitness.

3.2 Hawks and Doves
The Hawks and Doves game is a classic introduction to Evo-
lutionary Game Theory, like the Prisoners Dilemma is to
traditional Game Theory. Hawk and Dove are simplified
behavioural strategies. A Hawk against a Hawk is a very ag-
gressive affair, they will fight for the resource and the loser
is injured. Doves never fight, but if they face another Dove
they display their feathers and each has an equal chance of
winning the resource. This can be explored further in many
Evolutionary Game Theory texts and originally comes from
Evolution and the Theory of Games [5].

A brief analysis shows that Hawks do extremely well when it
is rare. For example, with only one Hawk against a popula-
tion of Doves, the Hawk always wins, but as Hawks increase
they begin to do very poorly. The payoffs to each strategy
can be drawn on a graph based on their payoffs, and where
they intersect is a Mixed ESS. Neither is a Pure ESS, as
each population can be invaded by a small number of the
other strategy.

3.3 Further Strategies
The Bourgeois strategy is a possible addition to the Hawks
and Doves game. Previously we did not consider that a re-
source may have already be owned, and that neither player
was the current owner. We can introduce the strategy Bour-
geois, a strategy associated with respect for ownership. The
Bourgeois strategy fights like a Hawk when it has ownership

of a resource, but displays like a Dove when attempting to
gain the resource.

Fixed Cost Strategies can also be used. However it can be
proven [7] that none of these strategies are Pure ESS’s as
a strategy where someone pays more than the current fixed
cost can invade, but also there are an infinite number of
Mixed ESS.

It is possible for different strategies to co-exist in a system,
without an ESS. In a disequilibrium one strategy is more
fit but there has not yet been sufficient time to reach equi-
librium. If the environment changes, favouring one strategy
then the other, then an ESS may not be reached. This cycli-
cal variation is apparently common in nature [7]. It is also
possible that a Pure ESS strategy might not be the best
choice to an agent in a certain condition. If an individual
is not fit, and performing the ESS strategy is costly, then it
may wait until it is fitter. This type of behaviour is called
coping. Even if both strategies persist it is not a Mixed ESS.

4. PEER-TO-PEER NETWORKS AND EGT
What do we need to consider when building a peer-to-peer
system? Each users attempt to maximise their own utility
effectively lowers the utility of the whole system. We need to
model the different types of the players in the game. What
actions can the players have at any point? Each user can
either stay the same, change to a new type, or leave the
system.

We need to consider how to store and deal with history
(local/global), how peers choose who to interact with, how
to do deals with traitors and other unhelpful users, those
who collude, those who change identity to avoid reputation
penalties and how to reward contributors.

In EGT we keep track of the frequencies of each type of
behaviour. These models specify the global behaviour of a
system. It will tell us how many users adopt a strategy at
any time, and how that strategy evolves over time. However
we need to keep track of how individual entities act with
each other and also which individuals switched strategies,
rather than just the frequencies themselves. Newcomers to
the system may be treated in a different way, even if they
play the same strategy as those who cooperate, to try and
combat the problem of zero-cost identities (changing identity
to avoid reputation penalties.)

Analysis of the interactions between the players shows that
a Hawk/Dove model may be inappropriate in this case. An
invader to the system could be a Hawk entering a realm of
cooperating Doves (who don’t face off against each other
for the resource), and so if the Hawk could invade then it
would work in this respect. But also it is unlikely that a
Hawk/Hawk face-off would result in negative utility to one of
the non-co-operators (one of their computers in damaged??)
So perhaps it makes more sense to think about large popula-
tions playing Prisoners Dilemma against each other, where
those who fail to cooperate receive a greater payoff and that
is their dilemma. Therefore we can use a payoff matrix as
modelled in [2], except more generic (see Figure 2).

In this case each user alternates between being a client and a



Figure 2: Possible payoff matrix for a peer-to-peer
system.

server in the game. The only meaningful decision is made by
the Server, who decides whether or not to cooperate or not.
Typical scores might be o = 5 and p = -1. It is clear that if
the client doesn’t request anything then the payoff for both
should be zero. However If the Server chooses to cooperate
then the client will receive x (presumably positive) and the
server will receive y (presumably negative). It is important
to consider whether the Client player is aware of the Server’s
action when he defects, as this may effect how he is treated
in the system later.

How can we model the performance of the system? The
benefit received by a user of the system can be given by: [3]

Q = αxβ

where β 6 1 and α > 0 are positive constants. This means
user benefit increases with more contributors but gives di-
minishing returns. The performance of the system is the
difference between the average benefit received by all users
and the average contribution cost by all users, and is Q =
αxβ − 1.

The contribution level x is the fraction of users whose gen-
erosity (i.e. type) exceeds the current contribution cost, 1/x.
So the fraction of users that contribute can be given by:

x = Prob(ti > 1/x)

We can now add a penalty mechanism to the network. It
is difficult to exclude users who freeride from the network,
as whilst freeriding behaviour may be observable, the innate
types of a user may not be. The penalty is introduced to
those users who are labelled as freeriders.

The effectiveness of any penalty scheme needs to be coun-
terbalanced by the fact that those who freeride may be able
to escape penalty by whitewashing, by repeatedly changing
their identity to escape punishment. Anyone with a new
identity will be indistinguishable from newcomers who want
to contribute, and penalising everyone who is new can result
in legitimate users not wanting to join in the first place.

The users in the system can be given 4 simplistic types to
represent their status in the population:

• EC - existing contributors

• EF/WW - existing freeriders/whitewashers

Figure 3: Penalization equations.

• NC - new contributors

• NF - new freeriders

The EF/WW group is deemed to be changeable depend-
ing upon the conditions of changing identities. If identities
are unchangeable or highly penalised on change then they
will act as freeriders - given the chance they will attempt
to change their identity to escape penalty and will act like
whitewashers.

To consider how this effects the users of the system we need
to look at the contribution costs and threat. For example
any users who intend to leave the system at the end of the
current period do not care about the penalty that they will
receive for freeriding. The system can be denoted by two dif-
ferent values, the contribution level of those who are leaving
and also of those who are staying. R denotes contribution
cost and T denotes threat, and we get two contribution
equations:

xleaver = Prob(ti > R)

xstayer = Prob(ti > R− T )

With turnover rate d the average contribution in the system
is none

xaverage = dxleaver + (1− d)xstayer

This contribution level of users who stay is always greater
than or equal to those who leave. User contribution is deter-
mined by the ratio between those who get full benefit and
those who get reduced benefit. We can either penalize all
newcomers, or we can penalize just those who have shown
freeriding/whitewashing behaviour.

If we have two contrasting systems, one where everyones
identity is permanent, and one where identities are changed
for free, we can show that the cost with free identities are
less, but the benefits to all users are also reduced. Feld-
man et al. [3] claim that a scenario can be reached where
the penalty level can threaten users but yet no penalty is
actually imposed.

Back to the actions of users of the system, each player should
be able to learn from the performance of different strategies,
though their own performance and observation of others.
Whether they decide to use this information is up to them
and if they do they will become a traitor. This is where a



user builds up reputation by cooperating and then defects to
a new non-cooperative strategy that results in better utility
for them.

5. CONCLUSIONS
If we want to create a peer-to-peer network with ideas taken
from Evolutionary Game Theory then I believe there are
useful ideas that can be applied. However, we must also
consider many things that are much more specific to the op-
eration of peer-to-peer networks than the dynamics of pop-
ulations, and focus upon individual entities actions in the
population rather than the overview of population strate-
gies.

The populations do however follow those found in more bi-
ological circumstances. Users can mutate by changing their
strategy, either randomly or through learning and turnover
can be modelled through the life and death of cells. If we
can create a system which has an Evolutionary Stable Strat-
egy where users cooperate (types NC/EC), and can’t be in-
vaded by freeriders and whitewashers (types NF/EF/WW)
then we have solved the problem of peer-to-peer systems.

Figure 2 shows a game which players in a peer-to-peer sys-
tem play, and I believe this is the best way to model such
interactions in this system. It makes sense to have a client
and a server, with no other players involved in an individual
transaction. Even if multiple players are uploading different
parts of a file to a client this can be modelled by pairwise
client/server games.

Overall, more analysis need to be done before I could suc-
cessfully construct a peer-to-peer system, and it seems cer-
tain areas are more applicable than others. Finding an ESS
which supports cooperation is the key.

6. FURTHER WORK
I have provided an overview of how Evolutionary Game The-
ory could be applied to peer-to-peer systems. In order to
decide whether a particular set of behaviours could produce
an ESS requires data over a number of generations of the
fitness and persistence of that behaviour.

Obviously whether the behaviours will come to an ESS or
not will be affected by the mechanism of the peer-to-peer
network. Incentive schemes need to be settled upon, and
penalty schemes. A mechanism design approach could com-
plement the game theoretic ideas.

A deeper analysis of the Evolutionary Game Theory mate-
rials may yield a game based idea that is even more suitable
than Prisoners Dilemma.

Whatever theory we work out would eventually need to be
tested in practice to prove that the theory is sound and that
we haven’t missed any factors that might effect the system,
such as effects of hardware.
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