Theorem 1 An efficient social choice function C : RXYN — X x RN can be implemented in dominant
strategies for agents with quasilinear utilities for allv: O — R only if p;(v) = h(v—;) — 32, vj(x(v)).

Proof. From the revelation principle, we can assume that C is truthfully implementable in dominant
strategies. Thus, from the definition of efficiency, the outcome must be chosen as

x = arg mﬁvai(x) (1)
K3
We can write the payment function as

pi(v) = h(vi,v—;) ZUJ (2)

J#

Observe that we can do this without loss of generality because h can be an arbitrary function that
cancels out the second term. Now for contradiction, assume that there exist some v; and v} such that

h(vi, v-i) # h(vj, v-4).

Case 1: z(v;,v_;) = z(v),v_;). Since C is truthfully implementable in dominant strategies, an agent i
whose true valuation was v; would be better off declaring v; than vj:

vi(x(vi, v—4)) = pi(vi,v_i) > vi(z(v),v_3)) — pi(vi,v_s) (3)
pi(vi,v_i) < pi(vi,v_) (4)

In the same way, an agent ¢ whose true valuation was v; would be better off declaring v, than v;:

vi(x(vj,v—4)) — pi(vi,v—i) > vi((vi,v_;)) — pi(vi,v_;) (5)
pi(vga U*’L) S D (’Ui,’U ) (6
Thus, we must have
Pi(vi,v_;) :Pi(véav—i) (7)
Uz; 1, Zv] Uu —1i ) = h(U;,’U_i) - Zvj(x(vz{7v—i)) (8)
J#i J#i

We are currently considering the case where x(v;, v_;) = z(v},v_;). Thus we can write

h(vi,v Zvj (v, v_4))) = h(vi,v_; ZUJ x(vi,v—4) (9)

J#i Jj#i
h(vs,v_;) = h(vi,v_;) (10)

This is a contradiction.

Case 2: z(v;,v—;) # x(v},v_;). Without loss of generality, let h(v;,v_;) < h(v},v_;). Since this inequality
is strict, there must exist some ¢ € R such that h(v;,v_;) < h(v),v_;) —e.
Our mechanism must work for every v. Consider a case where i’s valuation is

=D Vi (@(v5,v-)) T = 2(v;,v_;)
vl (x) = ¢ — 25 vi(z(vj,v-)) +e @ =x(vf,v-) (11)
=2 i vi(@) —¢ for any other x



Note that agent 7 still declares his valuations as real numbers; they just happen to satisfy the constraints
given above. Also note that the ¢ used here is the same € € R™ mentioned above. From the fact that C is
truthfully implementable in dominant strategies, an agent ¢ whose true valuation was v} would be better off
declaring v/’ than v;:

v (x(vi', v=i)) = pi(v),v_i) > 0] (2(vi, v_i)) — pi(vi, v_) (12)

Because our mechanism is efficient, it must pick the outcome that solves

f= max v (z) + Zvj () | . (13)

Picking z = z(v},v_;) gives f = ¢; picking x = x(v;,v—;) gives f = 0, and any other = gives f = —
Therefore, we can conclude that

z(v! v_) = z(vi,v_;). (14)

Substituting Equation (14) into Equation (12), we get

Vi (@(v, v-4)) = pi(vi, v—i) = v (2(vi,v-4)) — pi(vi, v-s). (15)
Expand Equation (15):

- Zvj(fﬂ(%{,v—i)) +e| — | h(v! v_y) — Zvj(a:(vg’, v_;))

j#i J#i
ZU] 'Uza z - 'Uza z Zv] Uu z . (16)
J#i J#i

We can use Equation (14) to replace x(v),v_;) by z(v;,v_;) on the LHS of Equation (16). The sums
then cancel out, and the inequality simplifies to

h(vi,v_;) > h(v],v_;) —e. (17)
Since z(v{,v_;) = (v}, v_;), we can use the argument from Case 1 to show that
h(vi,v_;) = h(v),v_;). (18)
Substituting Equation (18) into Equation (19), we get
h(vi,v_;) > h(vi,v_;) — €. (19)

This contradicts our initial assumption that h(xz(v;,v—_;)) < h(xz(v},v_;)) —e. We have thus shown that
there cannot exist v;, v] such that h(v;,v_;) # h(v},v_;).



