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Abstract

Multi-Agent Influence Diagrams (MAIDs) are a compact
modelling language for representing game theoretic settings.
We show various examples of games where this representa-
tion shows clear advantages in every area, as well as types of
games where MAIDs do not have an advantage over exten-
sive form trees. We also propose modifications that will close
this gap and maintain the strengths of this representation.

Introduction
Many approaches to problems in Artificial Intelligence re-
search come down to finding ways to represent a large prob-
lem in a way that is more compact or easier to use. In deci-
sion theory influence diagrams (Howard & Matheson 2003)
have been used for two decades to help greatly in the mod-
elling of single agent decisions. Bayesian Networks (BNs),
(Pearl 1988) which themselves are simplifying models for
chained Bayesian inference, are frequently extended with
influence diagram semantics. This has allowed the efficient
and general algorithms for BNs to be made available for de-
cision problems modelled with influence diagrams. Koller
(Koller & Milch 2001) first introduced a method for further
generalizing to represent networks of decisions for multi-
ple agents using Multi-Agent Influence Diagrams (MAIDs)
which allow these techniques to apply to game theoretic sit-
uations. This paper gives an overview of the features and
structure of MAIDs, and considers the benefits and draw-
backs of the original definition. We argue that these draw-
backs are not without remedy, and that there are improve-
ments which can be made. We will show both good and bad
examples of uses of MAIDs and propose extensions to the
modelling language to reduce the negative effects while still
maintaining the most important benefits on computation of
equilibria and modelling simplicity.

Multi Agent Influence Diagrams
We begin by briefly providing an overview of Multi-Agents
Influence Diagrams (MAIDs). For a more thorough descrip-
tion see (Koller & Milch 2001).

A MAID is a modification of influence diagrams,
(Howard & Matheson 2003) well known in decision analysis
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and Artificial Intelligence research. An Influence diagram is
a directed acyclic graph containing nodes representing the
variables of the decision problem each having their own do-
main of values. The set of parents of a node X is denoted
Pa(X) and we refer to one particular assignment of values
to those parent values as pa ∈ dom(Pa(X)). These variables
are of three types: chance, decision and utility variables (see
figure 1(ii)(iv)). Chance and decision variables can have as-
sociated conditional probability tables (CPDs) that map each
permutation of parents of that node (all pa’s) to a value in its
domain with a certain probability. Chance variables always
have a CPD while if a decision variable has one, then we call
it a decision rule. Utility nodes have a similar table where
each pa ∈ dom(Pa(Ui)) has an associated value in dom(Ui)
with probability of either 1 or 0.

In a traditional influence diagram there is only one agent.
In a MAID there are a set of agents A. Each decision node
D ∈ Da or utility node U ∈Ua is associated with a particular
agent a ∈ A. A strategy σa for agent a is an assignment of
a decision rule to all of a’s decisions. A strategy profile σ
contains a strategy for all agents.

Once a strategy profile is determined, then decision nodes
become identical to chance nodes in that they are defined
by a probability distribution. We denote this MAID by M[σ]
and can think of it as a Bayesian Network (BN)(Pearl 1988)
with a joint probability distribution PM[σ]. Then the expected
utility to an agent a of a strategy σ is :

EUa(σ) = ∑
U∈Ua

∑
u∈dom(U)

PM[σ](U = u) ·u (1)

Now, given two strategies we can compare them using
their expected utility in a BN.

Definition 1 A strategy σ∗
ε giving decision rules for all deci-

sion nodes in the set ε ∈ Da, is optimal for strategy profile σ
if for a maid M[−ε], where all the decisions not in ε have de-
cision rules assigned, σ∗ has a higher expected utility than
any other strategy over ε.

In other words, σ∗
ε is the best solution to optimally com-

pleting the decisions in M[−ε].

Definition 2 A strategy profile σ is a Nash equilibrium if
σDa is optimal for all a ∈ A.



Extensive Form Games
A MAID can be converted into an extensive form game tree
in a straightforward manner. It involves using the natural or-
dering of variables in the graph to split each level of the tree
symmetrically over the domains of the variables. Nodes in
the tree are joined into information sets if they correspond to
the same instantiation of values of their parents in the MAID.
Variables in the MAID graph can have several parents, all of
which are at various heights above that variable in the game
tree. This produces arbitrarily complicated information sets
from straightforward graph structures (see figure 1 for some
simple examples).
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Figure 1: (i-iii)Tree, MAID and s-graph for a turn-based,
perfect information game (iv-vi)Tree, MAID and s-graph for
a simultaneous, imperfect information, Bayesian game

Strategic Relevance
Definition 3 If δ is the decision rule for D under strategy
profile σ then D strategically relies on D’ if δ is optimal for
σ but δ is not optimal for another σ′ that differs at decision
D’ only. 1

If we have such a δ then we know that the decision rule
that is chosen at D’ is essential for us to construct δ op-
timally. Therefore δ′ should be optimized first. We can
construct a strategic relevance graph (s-graph) to represent
these relationships, drawing a directed edge from D’ to D. A
child strategically relies on its parent in this graph.

Computing Equilibria
Once the s-graph is constructed, if it is acyclic, as in figure
1(iii), then a simple algorithm to compute an optimal strat-
egy profile is to randomly set a strategy for each agent and
then optimize each decision in order starting with the deci-
sion from the s-graph that has no parents. Since it does not
strategically rely on any other decisions, it can be optimized

1(Koller & Milch 2001) also adds that there is no other δ′ that
is identical to δ except on zero probability events, but it is not per-
tinent to our discussion here

easily. It will contain an optimal decision rule which appears
as a chance node for all other decisions. We then continue
back through decisions until all decisions in the game are
optimized.

In the more general situation where the s-graph is cyclic
(as in figure 1(vi)) then we can locate the maximal strongly
connected components (SCCs). These are maximal subsets
of nodes such that each node has an edge to each other. This
example has only one, the entire graph, but a later example
will have several (figure 5). Each of these SCCs can be seen
as a subgame that has all the information it needs to be opti-
mal. Koller shows an algorithm similar to the one described
above where each SCC, starting from the one with no out-
side strategic reliance, is solved by a standard game solver
algorithm. These optimal decision rules are worked into the
MAID and the next SCC is solved. They argue that this
should be more efficient than solving the entire game since
standard game solvers generally have performance that is
worse than linear in the number of levels of the game tree.
Here we are solving a larger number of small games.

Real World Applications
We have seen that any MAID representation can be turned
into an extensive form game but it is not clear whether
the opposite, turning arbitrary extensive form games into
MAIDs, is always possible. It turns out that certain types
of games that seem very natural in extensive form are very
awkward in the new influence diagram notation.

Types of games that effectively use MAIDs
There are a few types of games where MAIDs offer clear
advantages over extensive form game trees:

• The s-graph is acyclic giving a clear ordering to optimize
decisions. This type of game is generally turn based with
perfect or almost perfect information available to agents
about decisions made by agents (or at least a signal about
it). SPACE : more compact; usually simpler than a tree.
TIME : no significant advantage on computing equilib-
rium, but we can use Bayesian inference for all sorts of
interesting questions.

• The s-graph is cyclic with no SCC or the graph is fully
connected. Now all the decisions depend, either directly
or indirectly, on all others. SIZE : the MAID is still much
more compact than the tree. TIME : no advantage for
equilibrium since it must solve the whole game as one

• The s-graph has multiple SCCs. This MAID has regions
of decisions that are fully connected and exposing their
information to each other, connected by incomplete infor-
mation between these regions. SPACE : big savings; the
number of entries in the tables of the BN will be linear in
the number of decisions whereas the trees will have expo-
nential number of leaves. TIME : can solve ’subgames’
given by the SCCs more efficiently since they are trees
with less levels.

A Good Example For this and following examples we
make a few extensions to the MAID syntax in order to make
graphs more readable. First, is the use of notation of the



form Da
i to indicate the ith decision for agent a. This will

be used for utility and chance variables as well, the origi-
nal definition uses colours to indicate the owning agent. We
also add dotted boxes such as those used in UML for pack-
age grouping to allow one arrow to a dotted box to indicate
that there is in fact one arrow going to each variable in that
box. If an arrow needs to go directly to a particular variable
it will cross into the box and touch that variable.

Example 1 Consider the game shown in figure 2(i) a multi-
round racing game where there are n agents racing and r
rounds. Each agent a is in a lane with three cars to choose
from that are always used for that lane. They have private
information Ca

r about which car they prefer to drive which
effects their utility for that race U a

r which can one of three
values denoting their finishing position in the race and this
is effected by the cars chosen by the other agents. In the next
round each agent shifts over one lane (mod the number of
lanes) and the car used in that lane last round has a slightly
better utility since its tires are still warm.
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Figure 2: MAID for the racecar example

The extensive form tree for this game has nr decisions
with 3 possible choices each, and n chance nodes indicat-
ing which of the 3 cars is preferred, giving 32nr leaves. For
n=r=3 as in our figure this is 318 ≈ 4×108. For the MAID
we count the sizes of the CPDs for all variables as follows:

• 9 decisions × 3 choices × 3-valued-parent = 81

• 3 utility nodes × 3 ranks × 4 × 3-valued-parents = 108

• 6 utility nodes × 3 ranks × 5 × 3-valued-parents = 270

This yields 459 entries needed in our CPDs for the MAID,
which in the general case is O(n2r). This is clearly a lot
more compact than the tree representation. In addition, as
we see in figure 2(ii), the s-graph has one SCC for each

round of the race, thus allowing us to optimize decisions for
each round starting with the last one in a backward induction
equivalent manner. Each of these round games will only be
n levels deep making each step of the solution faster.

Types of games that ineffectively use MAIDs
While this seems positive, there are unfortunately many nat-
ural games where MAIDs, in the form presented so far, are
less helpful. One of the main drawbacks of the modelling
language is that it does not support symmetric games.

Definition 4 An asymmetric game is a game where at least
one level of the extensive form tree is not filled straight
across with nodes or there are two nodes ni and n j on the
same level such that either

1. the agent associated with ni is different than the one for
n j

2. ni and n j have a different number of branches beneath
them

3. ni and n j have the same number of branches but not the
same choices associated with them

A MAID is always implicitly symmetric. Remember, that
to transform a MAID to a game tree we made each variable
into a level of the tree. This is not true in the reverse. Each
level in the tree no longer contains only a single variable,
but can contain mixtures of different variables or different
domains for those variables. Since each node in a MAID
represents all possibilities and values of one variable, the
CPD table will always reflect that and lose an opportunity
to be more compact. Generally an asymmetric tree can be
exponentially more compact than its equivalent MAID.
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Figure 3: Tree and MAID for the asymmetric centipede
game

This is potentially a huge drawback since many natural
games are asymmetric. To get an intuition about this we will
look at a simple example. Consider the standard centipede
game with structure and payoffs as shown in figure 3(i) in
extensive form. This is a highly asymmetric game where
each agent has the option to end the game at any time. The
naive representation of this as a MAID in figure 3(ii) is not
encouraging. As we can see, for each decision we need to as-
sociate a utility node that depends on all previous decisions
in order to account for the permutations where the game is
actually over. Since each utility node has a CPD table over
its domain, given the domains of all its parents, we can see
that the size of the last utility node alone is prohibitive:

P(U6|D1,D2,D3,D4,D5,D6) = 26



Moreover, 25 −1 of these are useless in deciding D6 since
the game will be stopped by an earlier decision. Only two
rows in the whole table have non-zero payoffs, where all
D1 . . .D5 go across and D6 can actually make a difference to
the payoff.

A Bad Example There are even problems when there is
no way for an agent to end the game prematurely, as long as
there is some persistent asymmetry.

Example 2 Suppose n game theorists are chosen as contes-
tants on a popular tv gameshow called Survival. The game
involves placing all the players on a remote (but scenic) is-
land where they participate in multiple rounds of voting to
see who is kicked off the island. If there is a tie in a vote, then
amongst those that are tied the one with the lowest index is
removed. In the final round, a game of chance determines
the winner between the remaining two players. The winner
receives 1 billion dollars, all others receive nothing.

The game tree for this example would be full but asym-
metric. After n levels it is possible to have nodes for differ-
ent agents side by side. This is because in a particular sub-
tree, after everyone has voted once, some agent ai will have
been voted off and will no longer get to cast votes. However,
in another subtree it might be a different agent that was voted
off and the tree beneath it will reflect this situation. This is
straightforward to represent with a tree in a compact manner.
It is still very large as the tree will have O(n!) leaves.
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Figure 4: MAID for the Survival example

Our MAID representation however, (see figure 4), is ac-
tually worse. We see again that utilities in later rounds need
all the information about previous decisions. Decisions only
see a masked signal from a deterministic chance node Ci that
indicates who was voted off, this does not change the com-
plexity. There is no way in the standard BN representation to
express different contexts when a decision need not be made
at all, as we can in the tree. So the CPD tables of the utility
nodes will have their values set to simply ignore votes from
a player Da

i , if any C1 . . .Ci−1 has a value of ai. This leads to
an enormous amount of duplication for situations that will

never occur. The utility nodes in the last round have n-1 in-
puts, each one with n possible values yielding a table with
nn−1 entries. Things could hardly be worse.
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Figure 5: s-graph for the Survival example

Before looking at how to improve this situation, we
should briefly consider the value of getting the MAID back
down to at least the size of the tree. From the s-graph of
Survival for n=4, in figure 5, we can see that there are well
defined SCCs that could be taken advantage of using the al-
gorithm from (Koller & Milch 2001). Remember, the arrows
between dotted boxes indicate that all decisions in one SCC
strategically rely on all decisions in the other SCC. However,
since it is one way we can still perform backward induction
by solving each round of the game, beginning with the last
decision round, where there are 3 agents left. This would
produce smaller trees, that is, with smaller n’s to solve. Thus
for n’s where the space needed is still feasible, we can com-
pute the equilibrium more efficiently than by solving the en-
tire game tree.

Context Specific Independence
Much work in the last decade has focused on exploiting con-
textual information in Bayesian Networks. Lack of space
does not allow a thorough explanation but (Boutilier et al.
1996), (Zhang & Poole 1999) and (Poole & Zhang 2003)
provide good explanations and an interesting progression
from specific to general solutions. The core observation is
that some situations can be described as contextually inde-
pendent of one another. A context is simply an instantiation
of some actual values to a set of variables. In the games
we have seen, it would correspond to a set of decisions to
end the caterpillar game in the previous step, D2

i−1 = across,
which would make the value of D1

i irrelevant to the payoff
(ie. U1

i = 0 in all cases).
More formally, two variables U and D are contextually

independent given some context C = c where c ∈ dom(C)
if:

P(U |D = d,C = c) = P(U |D = d′
,C = c)



for all d,d′ ∈ dom(U) such that P(D = d,C = c) > 0 and
P(D = d′,C = c) > 0 . That is, once we know the assign-
ments of the variables in C, the variable D will not influence
the outcome of U as long as we are not dealing with zero
probability events.

It is not surprising that this relationship is often expressed
using trees. Boutilier (Boutilier et al. 1996) formulated con-
textual probability trees (CPTs) and showed efficient algo-
rithms for network clustering and cut-set conditioning. The
latter took up less space than traditional methods but actu-
ally took longer to compute. Further extensions in (Zhang
& Poole 1999) were used by Guestrin et al. (Guestrin,
Venkataraman, & Koller 1996) in extending MAID-like
graphs to cooperative multiagent environments using fac-
tored MDPs. Poole (Poole & Zhang 2003) shows a more
general approach holding for any contextually independent
situation, and a modification of BNs to include contextual
information, while still allowing for normal inference tasks.
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Figure 6: Context trees for the centipede game

Context Specific MAIDs
To see how this might be useful for MAIDs consider the
centipede example again. We represented our MAID as a
Bayesian network with CPD tables of size 2n. Instead of a
table, we will now use trees such as in figure 6. We need
one tree for each value in the domain of each variable. The
numbers on the leaves of the tree are probabilities. Since
utility nodes are deterministic, they will always be 1 or 0;
this would not be the case for chance or decision nodes.
Three trees suffice to express U6’s distribution for a total of
21 probabilities. Zero is always implicitly in the domain of
all utility variables for the case when they are not reached so
we have two payoffs value plus a zero payoff. This is signifi-
cantly better than the 26 needed originally. In Poole’s formu-
lation these tree are actually represented as sets of context-
table pairs called confactors. In table 1 we can see what
these look like. Note that there is also room in this notation
for assigning sets of values to variables which can compress
the size even further.

In our survival example, we can take advantage of context
trees or confactors for all the chance nodes and all the utility
node after the first round. This will be compact since we will
never duplicate any context-probability pair, so it will mimic
the structure of the extensive form tree for the game in many
little pieces. The space complexity will be O(n!) because
each round i will have confactors for utility nodes over i par-
ent variables and there are n-1 rounds. This is still a lot of
space, but it is back to the approximate size of the game tree
representation plus overhead for representing confactors. As
mentioned before, the advantage of this would be that given
the same size of n, it should be more feasible to compute the
equilibrium using the subgame backward induction. This is
much more efficient than trying to solve the entire tree us-
ing standard techniques which often involves converting the
game to normal form since this is truly unfeasible for this
problem.

p(U6|D1 . . .D6)











〈

D1 = d,

U6 Val
4 0
3 0
0 1

〉

, . . .

. . . ,

〈

D5 = d,

U6 Val
4 0
3 0
0 1

〉

,

〈

D1 ∨ . . .∨D6 = a,

U Val
4 1
3 0
0 0

〉

Table 1: Confactors for U6 node

Conclusion
Multi Agent Influence Diagrams can be very useful for rep-
resenting many game theoretic situations. This is espe-
cially obvious when the games to be represented have lim-
ited information hiding between agents and have symmet-
ric styles of play. MAIDs provide a more expressive and
more compact representation that can easily take advan-
tage of Bayesian inference techniques to extract informa-
tion. They also lead to a natural ordering that can be auto-
matically extracted to optimize decisions leading to an ef-
ficient algorithm for computing the Nash equilibria of the
game. In situations where there are cycles in the strategic re-
liance amongst decisions it is often possible to do even better
by breaking the game into smaller subgames which can be
solved faster apart than together. For games that have less
restrictions, such as not allowing asymmetry, MAIDs can be
exponentially worse in the amount of space they use than
game trees. We showed several examples of this and pro-
posed Context Specific MAIDs as a solution that takes ad-
vantage of recent advances in integrating the notion of con-
text specific independence into Bayesian Networks. We pro-
vided arguments for why this would indeed bring the space
complexity back down to no more than the game tree repre-
sentation, and still clearly retains all the previous advantages
of MAIDs. Future directions for this research include mod-
ifying and implementing MAID algorithms for use in Con-
textual Belief Networks and collecting data on the speed of
equilibria computation using various approaches for asym-



metric games. Guestrin (Guestrin, Venkataraman, & Koller
1996) have done some work along these lines using an older
form of context specific inference for cooperative games.
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