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Constraint Satisfaction Problems: Definition

Definition

A constraint satisfaction problem consists of:

a set of variables

a domain for each variable

a set of constraints

Definition

A model of a CSP is an assignment of values to variables that
satisfies all of the constraints.
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CSPs as Search Problems

We map CSPs into search problems:

nodes: assignments of values to a subset of the variables

neighbours of a node: nodes in which values are assigned to
one additional variable

start node: the empty assignment (no variables assigned
values)

goal node: a node which assigns a value to each variable, and
satisfies all of the constraints

Note: the path to a goal node is not important
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Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

Definition

A variable is domain consistent if no value of the domain of the
node is ruled impossible by any of the constraints.

Example: dom(B) = {1, 2, 3, 4} isn’t domain consistent if we
have the constraint B 6= 3.
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Constraint Networks

Domain consistency only talked about constraints involving a
single variable

what can we say about constraints involving multiple variables?

Definition

A constraint network is defined by a graph, with

one node for every variable

one node for every constraint

and undirected edges running between variable nodes and
constraint nodes whenever a given variable is involved in a given
constraint.

When all of the constraints are binary, constraint nodes are
not necessary: we can drop constraint nodes and use edges to
indicate that a constraint holds between a pair of variables.

why can’t we do the same with general k-ary constraints?
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Example Constraint Network

A A<B B B<C C

Recall:

Variables: A, B,C

Domains: {1, 2, 3, 4}
Constraints: A < B, B < C
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Arc Consistency

Definition

An arc
〈
X, r(X, Ȳ )

〉
is arc consistent if for each value of X in

dom(X) there is some value Ȳ in dom(Ȳ ) such that r(X, Ȳ ) is
satisfied.

In symbols, ∀X ∈ dom(X), ∃Ȳ ∈ dom(Ȳ ) such that r(X, Ȳ )
is satisfied.

A network is arc consistent if all its arcs are arc consistent.

If an arc
〈
X, Ȳ

〉
is not arc consistent, all values of X in

dom(X) for which there is no corresponding value in dom(Ȳ )
may be deleted from dom(X) to make the arc

〈
X, Ȳ

〉
consistent.

This removal can never rule out any models (do you see why?)
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Arc Consistency Outcomes

Three possible outcomes (when all arcs are arc consistent):

One domain is empty ⇒ no solution
Each domain has a single value ⇒ unique solution
Some domains have more than one value ⇒ may or may not
be a solution

in this case, arc consistency isn’t enough to solve the problem:
we need to perform search
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Arc Consistency Algorithm

Consider the arcs in turn making each arc consistent.

An arc
〈
X, r(X, Ȳ )

〉
needs to be revisited if the domain of Y

is reduced.

Regardless of the order in which arcs are considered, we will
terminate with the same result: an arc consistent network.

Worst-case complexity of this procedure:

let the max size of a variable domain be d
let the number of constraints be e
complexity is O(ed3)

Some special cases are faster

e.g., if the constraint graph is a tree, arc consistency is O(ed)
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Arc Consistency Algorithm (binary constraints case)
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Adding edges back to TDA (binary constraints case)

When we change the domain of a variable X in the course of
making an arc 〈X, r〉 arc consistent, we add every arc 〈Z, r′〉
where r′ involves X and:

r 6= r′

Z 6= X

Thus we don’t add back the same arc:

This makes sense—it’s definitely arc consistent.
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Adding edges back to TDA (binary constraints case)

When we change the domain of a variable X in the course of
making an arc 〈X, r〉 arc consistent, we add every arc 〈Z, r′〉
where r′ involves X and:

r 6= r′

Z 6= X

We don’t add back other arcs that involve the same variable
X

We’ve just reduced the domain of X
If an arc 〈X, r〉 was arc consistent before, it will still be arc
consistent

in the “for all” we’ll just check fewer values
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Adding edges back to TDA (binary constraints case)

When we change the domain of a variable X in the course of
making an arc 〈X, r〉 arc consistent, we add every arc 〈Z, r′〉
where r′ involves X and:

r 6= r′

Z 6= X

We don’t add back other arcs that involve the same constraint
and a different variable:

Imagine that such an arc—involving variable Y —had been arc
consistent before, but was no longer arc consistent after X’s
domain was reduced.
This means that some value in Y ’s domain could satisfy r only
when X took one of the dropped values
But we dropped these values precisely because there were no
values of Y that allowed r to be satisfied when X takes these
values—contradiction!

CSPs: Arc Consistency CPSC 322 – CSPs 3, Slide 14



Recap Consistency Arc Consistency

Arc Consistency Example

A A<B B B<C C

dom(A) = {1, 2, 3, 4}; dom(B) = {1, 2, 3, 4}; dom(C) = {1, 2, 3, 4}
Suppose you first select the arc 〈A, A < B〉.

Remove A = 4 from the domain of A.
Add nothing to TDA.

Suppose that 〈B, B < C〉 is selected next.

Prune the value 4 from the domain of B.
Add 〈A, A < B〉 back into the TDA set (why?)

Suppose that 〈B, A < B〉 is selected next.

Prune 1 from the domain of B.
Add no element to TDA (why?)

Suppose the arc 〈A, A < B〉 is selected next

The value A = 3 can be pruned from the domain of A.
Add no element to TDA (why?)

Select 〈C, B < C〉 next.

Remove 1 and 2 from the domain of C.
Add 〈B, B < C〉 back into the TDA set

The other two edges are arc consistent, so the algorithm terminates
with dom(A) = {1, 2}, dom(B) = {2, 3}, dom(C) = {3, 4}.

CSPs: Arc Consistency CPSC 322 – CSPs 3, Slide 15


	Recap
	Consistency
	Arc Consistency

