Game Theory: Normal Form Games

CPSC 322 Lecture 34

April 3, 2006
Reading: excerpt from "Multiagent Systems", chapter 3.

Lecture Overview

Recap

Game Theory

Example Matrix Games

Rewards and Values

Suppose the agent receives the sequence of rewards
$r_{1}, r_{2}, r_{3}, r_{4}, \ldots$ What value should be assigned?

- total reward $V=\sum_{i=1}^{\infty} r_{i}$
- average reward $V=\lim _{n \rightarrow \infty} \frac{r_{1}+\cdots+r_{n}}{n}$
- discounted reward $V=\sum_{i=1}^{\infty} \gamma^{i-1} r_{i}$
- γ is the discount factor
- $0 \leq \gamma \leq 1$

Policies

- A stationary policy is a function:

$$
\pi: S \rightarrow A
$$

Given a state $s, \pi(s)$ specifies what action the agent who is following π will do.

- An optimal policy is one with maximum expected value
- we'll focus on the case where value is defined as discounted reward.
- For an MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy in this case.

Value of a Policy

- $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π.
- $V^{\pi}(s)$, where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$
\begin{aligned}
V^{\pi}(s) & =Q^{\pi}(s, \pi(s)) \\
Q^{\pi}(s, a) & =\sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right)
\end{aligned}
$$

Value of the Optimal Policy

- $Q^{*}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- $V^{*}(s)$, where s is a state, is the expected value of following the optimal policy in state s.
- Q^{*} and V^{*} can be defined mutually recursively:

$$
\begin{aligned}
Q^{*}(s, a) & =\sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right) \\
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
\pi^{*}(s) & =\underset{a}{\arg \max } Q^{*}(s, a)
\end{aligned}
$$

Value Iteration

- Idea: Given an estimate of the k-step lookahead value function, determine the $k+1$ step lookahead value function.
- Set V_{0} arbitrarily.
- e.g., zeros
- Compute Q_{i+1} and V_{i+1} from V_{i} :

$$
\begin{aligned}
Q_{i+1}(s, a) & =\sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right) \\
V_{i+1}(s) & =\max _{a} Q_{i+1}(s, a)
\end{aligned}
$$

- If we intersect these equations at Q_{i+1}, we get an update equation for V :

$$
V_{i+1}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right)\left(r\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right)
$$

Asynchronous VI: storing $Q[s, a]$

- Repeat forever:
- Select state s, action a;
- $Q[s, a] \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left(R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left[s^{\prime}, a^{\prime}\right]\right)$;

Lecture Overview

Recap

Game Theory

Example Matrix Games

Non-Cooperative Game Theory

- What is it?

Non-Cooperative Game Theory

- What is it?
- mathematical study of interaction between rational, self-interested agents

Non-Cooperative Game Theory

- What is it?
- mathematical study of interaction between rational, self-interested agents
- Why is it called non-cooperative?

Non-Cooperative Game Theory

- What is it?
- mathematical study of interaction between rational, self-interested agents
- Why is it called non-cooperative?
- while it's most interested in situations where agents' interests conflict, it's not restricted to these settings
- the key is that the individual is the basic modeling unit, and that individuals pursue their own interests
- cooperative/coalitional game theory has teams as the central unit, rather than agents
- You can think of a non-cooperative game as a decision diagram where different agents control different decision nodes, and where each agent has his own utility node.

TCP Backoff Game

Should you send your packets using correctly-implemented TCP (which has a "backoff" mechanism) or using a defective implementation (which doesn't)?

- Consider this situation as a two-player game:
- both use a correct implementation: both get 1 ms delay
- one correct, one defective: 4 ms delay for correct, 0 ms for defective
- both defective: both get a 3 ms delay.

TCP Backoff Game

- Consider this situation as a two-player game:
- both use a correct implementation: both get 1 ms delay
- one correct, one defective: 4 ms delay for correct, 0 ms for defective
- both defective: both get a 3 ms delay.
- Questions:
- What action should a player of the game take?
- Would all users behave the same in this scenario?
- What global patterns of behaviour should the system designer expect?
- Under what changes to the delay numbers would behavior be the same?
- What effect would communication have?
- Repetitions? (finite? infinite?)
- Does it matter if I believe that my opponent is rational?

Defining Games

- Finite, n-person game: $\langle N, A, u\rangle$:
- N is a finite set of n players, indexed by i
- $A=A_{1}, \ldots, A_{n}$ is a set of actions for each player i
- $a \in A$ is an action profile
- $u=\left\{u_{1}, \ldots, u_{n}\right\}$, a utility function for each player, where $u_{i}: A \mapsto \mathbb{R}$
- Writing a 2-player game as a matrix:
- row player is player 1 , column player is player 2
- rows are actions $a \in A_{1}$, columns are $a^{\prime} \in A_{2}$
- cells are outcomes, written as a tuple of utility values for each player

Lecture Overview

Recap

Game Theory

Example Matrix Games

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form") and as a decision network.

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form") and as a decision network.

Play this game with someone near you, repeating five times.

More General Form

Prisoner's dilemma is any game

	C	D
C	a, a	b, c
D	c, b	d, d

with $c>a>d>b$.

Games of Pure Competition

Players have exactly opposed interests

- There must be precisely two players (otherwise they can't have exactly opposed interests)
- For all action profiles $a \in A, u_{1}(a)+u_{2}(a)=c$ for some constant c
- Special case: zero sum
- Thus, we only need to store a utility function for one player

Matching Pennies

One player wants to match; the other wants to mismatch.

	Heads	Tails
	Heads	1
	-1	
Tails	-1	1

Matching Pennies

One player wants to match; the other wants to mismatch.

	Heads	Tails
	Heads	1
	-1	
Tails	-1	1

Play this game with someone near you, repeating five times.

Rock-Paper-Scissors

Generalized matching pennies.

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

...Believe it or not, there's an annual international competition for this game!

Games of Cooperation

Players have exactly the same interests.

- no conflict: all players want the same things
- $\forall a \in A, \forall i, j, u_{i}(a)=u_{j}(a)$
- we often write such games with a single payoff per cell
- why are such games "noncooperative"?

Coordination Game

Which side of the road should you drive on?

	Left	Right
Left	1	0
Right	0	1

Coordination Game

Which side of the road should you drive on?

Left Right

Play this game with someone near you, repeating five times.

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and competition.

	B	F
B	2,1	0,0
	0,0	1,2

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and competition.

	B	F
B	2,1	0,0
	0,0	1,2

Play this game with someone near you, repeating five times.

