Game Theory: Normal Form Games

CPSC 322 Lecture 34

April 3, 2006 Reading: excerpt from "Multiagent Systems", chapter 3.

Game Theory: Normal Form Games

CPSC 322 Lecture 34, Slide 1

3

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Lecture Overview

Recap

Game Theory

Example Matrix Games

Game Theory: Normal Form Games

CPSC 322 Lecture 34, Slide 2

æ

イロン 不同と 不同と 不同と

Rewards and Values

Suppose the agent receives the sequence of rewards $r_1, r_2, r_3, r_4, \ldots$ What value should be assigned?

▶ total reward
$$V = \sum_{i=1}^{\infty} r_i$$

▶ average reward $V = \lim_{n \to \infty} \frac{r_1 + \dots + r_n}{n}$

- discounted reward $V = \sum_{i=1}^{\infty} \gamma^{i-1} r_i$
 - γ is the discount factor

•
$$0 \le \gamma \le 1$$

3

- ◆ 臣 ▶ - ◆ 臣 ▶ - -

Policies

A stationary policy is a function:

$$\pi:S\to A$$

Given a state $s, \pi(s)$ specifies what action the agent who is following π will do.

An optimal policy is one with maximum expected value

- we'll focus on the case where value is defined as discounted reward.
- For an MDP with stationary dynamics and rewards with infinite or indefinite horizon, there is always an optimal stationary policy in this case.

伺 とう ヨン うちょう

Value of a Policy

- ▶ $Q^{\pi}(s, a)$, where a is an action and s is a state, is the expected value of doing a in state s, then following policy π .
- V^π(s), where s is a state, is the expected value of following policy π in state s.
- Q^{π} and V^{π} can be defined mutually recursively:

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V^{\pi}(s') \right)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Value of the Optimal Policy

- ► Q^{*}(s, a), where a is an action and s is a state, is the expected value of doing a in state s, then following the optimal policy.
- V*(s), where s is a state, is the expected value of following the optimal policy in state s.
- Q^* and V^* can be defined mutually recursively:

$$Q^{*}(s,a) = \sum_{s'} P(s'|a,s) \left(r(s,a,s') + \gamma V^{*}(s') \right)$$
$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$
$$\pi^{*}(s) = \arg\max_{a} Q^{*}(s,a)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Value Iteration

- Idea: Given an estimate of the k-step lookahead value function, determine the k + 1 step lookahead value function.
- ► Set V₀ arbitrarily.
 - e.g., zeros
- Compute Q_{i+1} and V_{i+1} from V_i :

$$Q_{i+1}(s,a) = \sum_{s'} P(s'|a,s) \left(r(s,a,s') + \gamma V_i(s') \right)$$
$$V_{i+1}(s) = \max_{a} Q_{i+1}(s,a)$$

► If we intersect these equations at Q_{i+1}, we get an update equation for V:

$$V_{i+1}(s) = \max_{a} \sum_{s'} P(s'|a, s) \left(r(s, a, s') + \gamma V_i(s') \right)$$

Game Theory: Normal Form Games

★御▶ ★理▶ ★理▶ 二臣

Asynchronous VI: storing Q[s, a]

► Repeat forever:

Select state s, action a;

•
$$Q[s,a] \leftarrow \sum_{s'} P(s'|s,a) \left(R(s,a,s') + \gamma \max_{a'} Q[s',a'] \right)$$

æ

・ロト ・回ト ・ヨト ・ヨト

Lecture Overview

Recap

Game Theory

Example Matrix Games

Game Theory: Normal Form Games

CPSC 322 Lecture 34, Slide 9

æ

・ロ・ ・ 日・ ・ 日・ ・ 日・

What is it?

Game Theory: Normal Form Games

CPSC 322 Lecture 34, Slide 10

æ

イロン イヨン イヨン イヨン

- What is it?
 - mathematical study of interaction between rational, self-interested agents

イロト イヨト イヨト イヨト

- What is it?
 - mathematical study of interaction between rational, self-interested agents
- Why is it called non-cooperative?

< 67 ▶

What is it?

 mathematical study of interaction between rational, self-interested agents

- Why is it called non-cooperative?
 - while it's most interested in situations where agents' interests conflict, it's not restricted to these settings
 - the key is that the individual is the basic modeling unit, and that individuals pursue their own interests
 - cooperative/coalitional game theory has teams as the central unit, rather than agents
- You can think of a non-cooperative game as a decision diagram where different agents control different decision nodes, and where each agent has his own utility node.

▲□→ ▲ 国 → ▲ 国 →

TCP Backoff Game

Should you send your packets using correctly-implemented TCP (which has a "backoff" mechanism) or using a defective implementation (which doesn't)?

- Consider this situation as a two-player game:
 - **both use a correct implementation:** both get 1 ms delay
 - one correct, one defective: 4 ms delay for correct, 0 ms for defective
 - both defective: both get a 3 ms delay.

4 B M 4 B M

TCP Backoff Game

- Consider this situation as a two-player game:
 - both use a correct implementation: both get 1 ms delay
 - one correct, one defective: 4 ms delay for correct, 0 ms for defective
 - both defective: both get a 3 ms delay.
- Questions:
 - What action should a player of the game take?
 - Would all users behave the same in this scenario?
 - What global patterns of behaviour should the system designer expect?
 - Under what changes to the delay numbers would behavior be the same?
 - What effect would communication have?
 - Repetitions? (finite? infinite?)
 - Does it matter if I believe that my opponent is rational?

・ 回 と ・ ヨ と ・ ヨ と

Defining Games

Finite, *n*-person game: $\langle N, A, u \rangle$:

- N is a finite set of n players, indexed by i
- $A = A_1, \ldots, A_n$ is a set of actions for each player i
 - $a \in A$ is an action profile
- ▶ $u = \{u_1, \ldots, u_n\}$, a utility function for each player, where $u_i : A \mapsto \mathbb{R}$
- Writing a 2-player game as a matrix:
 - row player is player 1, column player is player 2
 - rows are actions $a \in A_1$, columns are $a' \in A_2$
 - cells are outcomes, written as a tuple of utility values for each player

マボン イラン イラン・ラ

Lecture Overview

Recap

Game Theory

Example Matrix Games

Game Theory: Normal Form Games

CPSC 322 Lecture 34, Slide 13

æ

イロン イヨン イヨン イヨン

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form") and as a decision network.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ("normal form") and as a decision network.

Play this game with someone near you, repeating five times.

イロン イボン イヨン イヨン 三日

More General Form

Prisoner's dilemma is any game

 $\begin{array}{c|c} C & D \\ \\ C & a, a & b, c \\ \\ D & c, b & d, d \end{array}$

with c > a > d > b.

æ

< 注→ < 注→

< 67 ►

Games of Pure Competition

Players have exactly opposed interests

- There must be precisely two players (otherwise they can't have exactly opposed interests)
- ▶ For all action profiles $a \in A$, $u_1(a) + u_2(a) = c$ for some constant c
 - Special case: zero sum
- Thus, we only need to store a utility function for one player

Matching Pennies

One player wants to match; the other wants to mismatch.

Heads 1 -1 Tails -1 1

Heads

Tails

Game Theory: Normal Form Games

CPSC 322 Lecture 34, Slide 17

★ 문 → < 문 →</p>

< 🗇 🕨

Matching Pennies

One player wants to match; the other wants to mismatch.

Play this game with someone near you, repeating five times.

★ 문 ► ★ 문 ►

Rock-Paper-Scissors

Generalized matching pennies.

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

...Believe it or not, there's an annual international competition for this game!

(4回) (1日) (日)

Games of Cooperation

Players have exactly the same interests.

no conflict: all players want the same things

$$\blacktriangleright \forall a \in A, \forall i, j, u_i(a) = u_j(a)$$

- we often write such games with a single payoff per cell
- why are such games "noncooperative"?

Coordination Game

Which side of the road should you drive on?

Left Right

Left	1	0
Right	0	1

Game Theory: Normal Form Games

★ 문 → < 문 →</p>

< □ > < 🗗 >

Coordination Game

Which side of the road should you drive on?

Play this game with someone near you, repeating five times.

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation *and* competition.

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation *and* competition.

Play this game with someone near you, repeating five times.