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Decision Variables

I Decision variables are like random variables that an agent gets
to choose the value of.

I A possible world specifies the value for each decision variable
and each random variable.

I For each assignment of values to all decision variables, the
measures of the worlds satisfying that assignment sum to 1.

I The probability of a proposition is undefined unless you
condition on the values of all decision variables.
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Single decisions

I Given a single decision variable, the agent can choose D = di

for any di ∈ dom(D).
I The expected utility of decision D = di is E(U |D = di).
I An optimal single decision is the decision D = dmax whose

expected utility is maximal:

dmax = arg max
di∈dom(D)

E(U |D = di).
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Decision Networks

I A decision network is a graphical representation of a finite
sequential decision problem.

I Decision networks extend belief networks to include decision
variables and utility.

I A decision network specifies what information is available
when the agent has to act.

I A decision network specifies which variables the utility
depends on.
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Decision Networks

I A random variable is drawn as an
ellipse. Arcs into the node represent
probabilistic dependence.

I A decision variable is drawn as an
rectangle. Arcs into the node
represent information available when
the decision is made.

I A value node is drawn as a diamond.
Arcs into the node represent values
that the value depends on.
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Sequential Decisions

I An intelligent agent doesn’t make a multi-step decision and
carry it out without considering revising it based on future
information.

I A more typical scenario is where the agent:
observes, acts, observes, acts, . . .

I Subsequent actions can depend on what is observed.
I What is observed depends on previous actions.

I Often the sole reason for carrying out an action is to provide
information for future actions.

I For example: diagnostic tests, spying.
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Sequential decision problems

I A sequential decision problem consists of a sequence of
decision variables D1, . . . , Dn.

I Each Di has an information set of variables pDi, whose value
will be known at the time decision Di is made.

I What should an agent do?
I What an agent should do at any time depends on what it will

do in the future.
I What an agent does in the future depends on what it did

before.
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Policies

I A policy specifies what an agent should do under each
circumstance.

I A policy is a sequence δ1, . . . , δn of decision functions

δi : dom(pDi) → dom(Di).

This policy means that when the agent has observed
O ∈ dom(pDi), it will do δi(O).
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Expected Value of a Policy

I Possible world ω satisfies policy δ, written ω |= δ if the world
assigns the value to each decision node that the policy
specifies.

I The expected utility of policy δ is

E(U |δ) =
∑
ω|=δ

U(ω)× P (ω),

I An optimal policy is one with the highest expected utility.
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Decision Network for the Alarm Problem

Tampering Fire
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Finding the optimal policy

I Remove all variables that are not ancestors of a value node

I Create a factor for each conditional probability table and a
factor for the utility.

I Sum out variables that are not parents of a decision node.
I Select a variable D that is only in a factor f with (some of)

its parents.
I this variable will be one of the decisions that is made latest

I Eliminate D by maximizing. This returns:
I the optimal decision function for D, arg maxD f
I a new factor to use in VE, maxD f

I Repeat till there are no more decision nodes.

I Sum out the remaining random variables. Multiply the
factors: this is the expected utility of the optimal policy.
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Complexity of finding the optimal policy

I If there are k binary parents, to a decision D, there are 2k

assignments of values to the parents.

I If there are b possible actions, there are b2k
different decision

functions.

I If there are d decisions, each with k binary parents and b

possible actions, there are
(
b2k

)d
policies.

I Doing variable elimination lets us find the optimal policy after

considering only d · b2k
policies

I The dynamic programming algorithm is much more efficient
than searching through policy space.
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Value of Information

I The value of information X for decision D is the utility of the
the network with an arc from X to D minus the utility of the
network without the arc.

I The value of information is always non-negative.
I It is positive only if the agent changes its action depending on

X.

I The value of information provides a bound on how much you
should be prepared to pay for a sensor. How much is a better
weather forecast worth?
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Value of Control

I The value of control of a variable X is the value of the
network when you make X a decision variable minus the value
of the network when X is a random variable.

I You need to be explicit about what information is available
when you control X.

I If you control X without observing, controlling X can be
worse than observing X.

I If you keep the parents the same, the value of control is always
non-negative.
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Agents as Processes

Agents carry out actions:

I forever infinite horizon

I until some stopping criteria is met indefinite horizon

I finite and fixed number of steps finite horizon
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Decision-theoretic Planning

What should an agent do under these different planning horizons,
when

I it gets rewards (and punishments) and tries to maximize its
rewards received

I actions can be noisy; the outcome of an action can’t be fully
predicted

I there is a model that specifies the probabilistic outcome of
actions

I the world is fully observable
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World State

I The world state is the information such that if you knew the
world state, no information about the past is relevant to the
future. Markovian assumption.

I Let Si be the state at time i

P (St+1|S0, A0, . . . , St, At) = P (St+1|St, At)

P (s′|s, a) is the probability that the agent will be in state s′

immediately after doing action a in state s.

I The dynamics is stationary if the distribution is the same for
each time point.

Decision Theory: Sequential Decisions CPSC 322 Lecture 32, Slide 23



Recap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Decision Processes

I A Markov decision process augments a stationary Markov
chain with actions and values:

S0 S1 S3S2

A0 A1 A2

R1 R2 R3
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Markov Decision Processes

An MDP is defined by:

I set S of states.

I set A of actions.

I P (St+1|St, At) specifies the dynamics.
I R(St, At, St+1) specifies the reward. The agent gets a reward

at each time step (rather than just a final reward).
I R(s, a, s′) is the reward received when the agent is in state s,

does action a and ends up in state s′.
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Example: Simple Grid World
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Grid World Model

I Actions: up, down, left, right.

I 100 states corresponding to the positions of the robot.

I Robot goes in the commanded direction with probability 0.7,
and one of the other directions with probability 0.1.

I If it crashes into an outside wall, it remains in its current
position and has a reward of −1.

I Four special rewarding states; the agent gets the reward when
leaving.
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Planning Horizons

The planning horizon is how far ahead the planner looks to make a
decision.

I The robot gets flung to one of the corners at random after
leaving a positive (+10 or +3) reward state.

I the process never halts
I infinite horizon

I The robot gets +10 or +3 entering the state, then it stays
there getting no reward. These are absorbing states.

I The robot will eventually reach the absorbing state.
I indefinite horizon
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Information Availability

What information is available when the agent decides what to do?

I fully-observable MDP the agent gets to observe St when
deciding on action At.

I partially-observable MDP (POMDP) the agent has some noisy
sensor of the state. It needs to remember its sensing and
acting history.

We’ll only consider (fully-observable) MDPs.
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