Decision Theory: Sequential Decisions

CPSC 322 Lecture 32

March 29, 2006 Textbook §12.3

p Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes

Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies

Value of Information, Control

Decision Processes

Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MD

Decision Variables

- ▶ Decision variables are like random variables that an agent gets to choose the value of.
- ➤ A possible world specifies the value for each decision variable and each random variable.
- ► For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
- ► The probability of a proposition is undefined unless you condition on the values of all decision variables.

Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes Mil

Single decisions

- ▶ Given a single decision variable, the agent can choose $D = d_i$ for any $d_i \in dom(D)$.
- ▶ The expected utility of decision $D = d_i$ is $\mathcal{E}(U|D = d_i)$.
- An optimal single decision is the decision $D = d_{max}$ whose expected utility is maximal:

$$d_{max} = \underset{d_i \in dom(D)}{\arg \max} \, \mathcal{E}(U|D = d_i).$$

Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MD

Decision Networks

- ► A decision network is a graphical representation of a finite sequential decision problem.
- Decision networks extend belief networks to include decision variables and utility.
- ► A decision network specifies what information is available when the agent has to act.
- ▶ A decision network specifies which variables the utility depends on.

Decision Networks

- ► A random variable is drawn as an ellipse. Arcs into the node represent probabilistic dependence.
- ► A decision variable is drawn as an rectangle. Arcs into the node represent information available when the decision is made.
- A value node is drawn as a diamond. Arcs into the node represent values that the value depends on.

Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MD

Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies

Value of Information, Control

Decision Processes

p Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDP

Sequential Decisions

- An intelligent agent doesn't make a multi-step decision and carry it out without considering revising it based on future information.
- A more typical scenario is where the agent: observes, acts, observes, acts, . . .
- Subsequent actions can depend on what is observed.
 - What is observed depends on previous actions.
- Often the sole reason for carrying out an action is to provide information for future actions.
 - ► For example: diagnostic tests, spying.

ap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Sequential decision problems

- ▶ A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n .
- ▶ Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made.

- ▶ What should an agent do?
 - What an agent should do at any time depends on what it will do in the future.
 - What an agent does in the future depends on what it did before.

Policies

- ▶ A policy specifies what an agent should do under each circumstance.
- ▶ A policy is a sequence $\delta_1, \ldots, \delta_n$ of decision functions

$$\delta_i : dom(pD_i) \to dom(D_i).$$

This policy means that when the agent has observed $O \in dom(pD_i)$, it will do $\delta_i(O)$.

Expected Value of a Policy

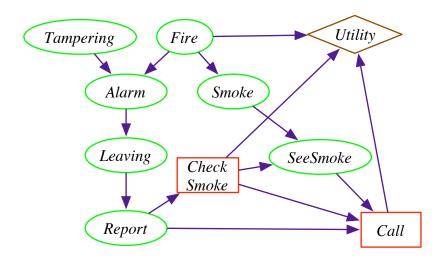
- ▶ Possible world ω satisfies policy δ , written $\omega \models \delta$ if the world assigns the value to each decision node that the policy specifies.
- ▶ The expected utility of policy δ is

$$\mathcal{E}(U|\delta) = \sum_{\omega \models \delta} U(\omega) \times P(\omega),$$

▶ An optimal policy is one with the highest expected utility.

ap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Decision Network for the Alarm Problem



Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies

Value of Information, Control

Decision Processes

Recap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Finding the optimal policy

- Remove all variables that are not ancestors of a value node
- Create a factor for each conditional probability table and a factor for the utility.
- ▶ Sum out variables that are not parents of a decision node.
- Select a variable D that is only in a factor f with (some of) its parents.
 - this variable will be one of the decisions that is made latest
- ▶ Eliminate *D* by maximizing. This returns:
 - the optimal decision function for D, $\arg \max_D f$
 - ightharpoonup a new factor to use in VE, $\max_D f$
- Repeat till there are no more decision nodes.
- ► Sum out the remaining random variables. Multiply the factors: this is the expected utility of the optimal policy.

Complexity of finding the optimal policy

- ▶ If there are k binary parents, to a decision D, there are 2^k assignments of values to the parents.
- If there are b possible actions, there are b^{2k} different decision functions.
- ▶ If there are d decisions, each with k binary parents and b possible actions, there are $\left(b^{2^k}\right)^d$ policies.
- ▶ Doing variable elimination lets us find the optimal policy after considering only $d \cdot b^{2^k}$ policies
 - ► The dynamic programming algorithm is much more efficient than searching through policy space.

Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies

Value of Information, Control

Decision Processes

Value of Information

- ▶ The value of information *X* for decision *D* is the utility of the the network with an arc from *X* to *D* minus the utility of the network without the arc.
 - ▶ The value of information is always non-negative.
 - ightharpoonup It is positive only if the agent changes its action depending on X.
- ▶ The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a better weather forecast worth?

Value of Control

- ► The value of control of a variable *X* is the value of the network when you make *X* a decision variable minus the value of the network when *X* is a random variable.
- ➤ You need to be explicit about what information is available when you control X.
 - ▶ If you control *X* without observing, controlling *X* can be worse than observing *X*.
 - If you keep the parents the same, the value of control is always non-negative.

Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies

Value of Information, Control

Decision Processes

ap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Agents as Processes

Agents carry out actions:

- forever infinite horizon
- until some stopping criteria is met indefinite horizon
- ▶ finite and fixed number of steps finite horizon

Recap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Decision-theoretic Planning

What should an agent do under these different planning horizons, when

- it gets rewards (and punishments) and tries to maximize its rewards received
- actions can be noisy; the outcome of an action can't be fully predicted
- there is a model that specifies the probabilistic outcome of actions
- the world is fully observable

Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes

Lecture Overview

Recap

Sequential Decisions

Finding Optimal Policies

Value of Information, Control

Decision Processes

World State

- ► The world state is the information such that if you knew the world state, no information about the past is relevant to the future. Markovian assumption.
- ▶ Let S_i be the state at time i

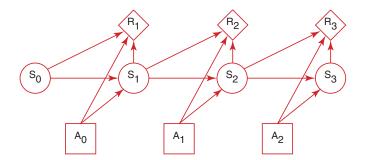
$$P(S_{t+1}|S_0, A_0, \dots, S_t, A_t) = P(S_{t+1}|S_t, A_t)$$

P(s'|s,a) is the probability that the agent will be in state s' immediately after doing action a in state s.

► The dynamics is stationary if the distribution is the same for each time point.

Decision Processes

► A Markov decision process augments a stationary Markov chain with actions and values:



cap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDP

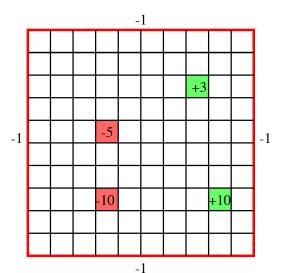
Markov Decision Processes

An MDP is defined by:

- set S of states.
- set A of actions.
- ▶ $P(S_{t+1}|S_t, A_t)$ specifies the dynamics.
- ▶ $R(S_t, A_t, S_{t+1})$ specifies the reward. The agent gets a reward at each time step (rather than just a final reward).
 - ▶ R(s, a, s') is the reward received when the agent is in state s, does action a and ends up in state s'.

Recap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Example: Simple Grid World



Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MD

Grid World Model

- Actions: up, down, left, right.
- ▶ 100 states corresponding to the positions of the robot.
- ▶ Robot goes in the commanded direction with probability 0.7, and one of the other directions with probability 0.1.
- ▶ If it crashes into an outside wall, it remains in its current position and has a reward of -1.
- ► Four special rewarding states; the agent gets the reward when leaving.

ecap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDPs

Planning Horizons

The planning horizon is how far ahead the planner looks to make a decision.

- ► The robot gets flung to one of the corners at random after leaving a positive (+10 or +3) reward state.
 - the process never halts
 - infinite horizon
- ► The robot gets +10 or +3 entering the state, then it stays there getting no reward. These are absorbing states.
 - ▶ The robot will eventually reach the absorbing state.
 - indefinite horizon

ecap Sequential Decisions Finding Optimal Policies Value of Information, Control Decision Processes MDF

Information Availability

What information is available when the agent decides what to do?

- ▶ fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It needs to remember its sensing and acting history.

We'll only consider (fully-observable) MDPs.