Propositional Logic: Syntax and Semantics

CPSC 322 Lecture 18

February 22, 2006 Textbook §4.0 – 4.2

Propositional Logic: Syntax and Semantics

CPSC 322 Lecture 18, Slide 1

Logic: A more general framework for reasoning

- Let's now think about how to represent a world about which we have only partial (but certain) information
- Our tool: propositional logic
- ► General problem:
 - tell the computer how the world works
 - tell the computer some facts about the world
 - ask a yes/no question about whether other facts must be true

Why Propositions?

We'll be looking at problems that could still be represented using CSPs. Why use propositional logic?

- Specifying logical formulae is often more natural than filling in tables (i.e., arbitrary constraints)
- It is easier to check and debug formulae than tables
- ▶ We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries that may be more complicated than asking for the value of one variable
- It is easy to incrementally add formulae
- It can be extended to infinitely many variables (using logical quantification)
- This is a starting point for more complex logics (e.g., first-order logic) that go beyond CSPs.

Representation and Reasoning System

A Representation and Reasoning System (RRS) is made up of:

- syntax: specifies the symbols used, and how they can be combined to form legal sentences
- semantics: specifies the meaning of the symbols
- reasoning theory or proof procedure: a (possibly nondeterministic) specification of how an answer can be produced.

Using an RRS

- 1. Begin with a task domain.
- 2. Distinguish those things you want to talk about (the ontology).
- 3. Choose symbols in the computer to denote propositions
- 4. Tell the system knowledge about the domain.
- 5. Ask the system whether new statements about the domain are true or false.

Propositional Definite Clauses

- Propositional Definite Clauses: our first representation and reasoning system.
- Two kinds of statements:
 - that a proposition is true
 - that a proposition is true if one or more other propositions are true
- ► To define this RSS, we'll need to specify:
 - syntax
 - semantics
 - proof procedure

Propositional Definite Clauses: Syntax

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form b₁ ∧ b₂ where b₁ and b₂ are bodies.
- A definite clause is an atom or is a rule of the form h ← b where h is an atom and b is a body.
 - read this as "h if b"
- A knowledge base is a set of definite clauses

Syntax: Example

The following are syntactically correct statements in our language:

- ► ai_is_fun
- $\blacktriangleright ai_is_fun \leftarrow get_good_grade$
- $\blacktriangleright ai_is_fun \leftarrow get_good_grade \land not_too_much_work$
- $\blacktriangleright ai_is_fun \leftarrow get_good_grade \land not_too_much_work \land prof_can_operate_laptop$

The following statements are syntactically incorrect:

- \blacktriangleright $ai_is_fun \lor ai_is_boring$
- ► $ai_is_fun \land relaxing_term \leftarrow$ $get_good_grade \land not_too_much_work$

Do any of these statements *mean* anything? Syntax doesn't answer this question.

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

► An interpretation *I* assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

- A body $b_1 \wedge b_2$ is true in I if b_1 is true in I and b_2 is true in I.
- A rule h ← b is false in I if b is true in I and h is false in I. The rule is true otherwise.
- ▶ A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are *true*.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊨ g, if g is true in every model of KB.
 - ▶ we also say that *g* logically follows from *KB*, or that *KB* entails *g*.
- In other words, KB ⊨ g if there is no interpretation in which KB is true and g is false.