Reasoning With Conditional CeterisParibus Preference Statements

Craig Boutilier
Dept. of Computer Science
University of British Columbia
Vancouver, BC V6T 174
cebly@cs.ubc.ca

Abstract

In many domainsit isdesirableto assess the pref-
erences of usersin aqualitativerather than quan-
titative way. Such representations of qualitative
preference orderings form an important compo-
nent of automated decision tools. We propose
agraphical representation of preferences that re-
flects conditional dependence and independence
of preference statements under a ceteris paribus
(al else being equal) interpretation. Such arep-
resentationisoften compact and arguably natural .
We describe severa search agorithms for domi-
nance testing based on this representation; these
algorithms are quite effective, especidly in spe-
cific network topol ogies, such as chain- and tree-
structured networks, as well as polytrees.

1 Introduction

Preference dlicitation is an important aspect of automated
decision making. Inmany applicationdomains, the space of
possible actions or decisions available to someoneisfixed,
with well-understood dynamics; the only variable compo-
nent in the decision making process are the preferences of
the user on whose behalf a decision isbeing made. Thisis
often the case in domains such as product configuration or
medical diagnosis (to name but two).

Extracting preference information from users is generally
arduous, and human decision anaysts have developed so-
phisticated techniques to help dlicit this information from
decision makers[11]. A key goal in the study of computer-
based decision support istheconstruction of toolsthat allow
the preference dlicitation process to be automated, either
partialy or fully. In particular, methods for extracting, rep-
resenting and reasoning about the preferences of naiveusers
isespecialy important in Al applications, where users can-
not be expected to have the patience (or sometimesthe abil-
ity) to provide detailed preference relations or utility func-
tions. In applications ranging from collaborative filtering
[14] and recommender systems [15] to product configura-
tion [6] to medica decision making [4], typical users may

Ronen |. Brafman
Department of Math and CS
Ben-Gurion University
Beer Sheva, Israel 84105
brafman@cs.bgu.ac.il

Holger H. Hoos and David Poole
Dept. of Computer Science
University of British Columbia
Vancouver, BC V6T 174
{hoos,poole} @cs.ubc.ca

not be ableto provide much more than qualitativerankings
of fairly circumscribed outcomes.

Ideally, a preference representation for such applications
would capture statements that are natura for users to as-
sess, are reasonably compact, and support effective infer-
ence (particularly when deciding whether one outcome is
preferred to, or dominates, another). In this paper, we ex-
plore a network representation of conditional preference
statements under a ceteris paribus (all else equal) assump-
tion. The semantics of our local preference statements cap-
ture the classica notion of (conditional) preferential inde-
pendence [13], while our CP-network (conditional prefer-
ence network) representation allowsthese statements to be
organized in a precise way. We a so describe severd infer-
ence agorithmsfor dominance queries, and show that these
are very efficient for certain classes of networks, and seem
to work well on genera network structures.

Our conditional ceteris paribus semantics requiresthat the
user specify, for any specific feature I of interest, which
other features can impact her preferences for values of F'.
For each instantiation of the relevant features (parents of
F), the user must specify her preference ordering over val-
ues of I’ conditional on the parents assuming the instanti-
ated vaues; for instance, f; may be preferred to f> when
g1 and h- hold. Such apreferenceisgivenaceterisparibus
interpretation: f, ispreferred to - given g, and h all else
being equal. In other words, for any fixed instantiation of
the remaining features, an outcome where f; holdsis pre-
ferred to one where f, holds (assuming g; and h-,). Such
statements are arguably quite natural and appear in severa
places (e.g., in e-commerce applications). For instance, the
product selection service offered by Active Buyer's Guide
asks for (unconditional) ceteris paribus statements in as-
sessing a user’s preference for various products.! Condi-
tiona expressions offer even greater flexibility. Generaly,
tools for representing and reasoning about ceteris paribus
preferences are important because they should aid in the
dicitation process for naive users.

1See wwwv. act i vebuyer sgui de. com The tools there
also ask for some semi-quantitative information about prefer-
ences.

Preference dlicitation is a complex task and is akey focus
in work on decision analysis[13, 11, 9], especidly dicita
tioninvolvingexpert users. Automating the process of pref-
erence extraction can be very difficult. Straightforward ap-
proachesinvolvingthedirect comparison of all pairsof out-
comes are generally infeasible for anumber of reasons, in-
cluding the exponential number of outcomes (in the num-
ber of relevant features for which preferences are indi cated)
and the compl exity of the questionsthat are asked (the com-
parison of complete outcomes). There has been consider-
able work on exploiting the structure of preferences and
utility functionsin away that alows them to be appropri-
ately decomposed [13, 1]. For instance, if certain attributes
arepreferentially independent of others[13], onecan assign
degrees of preference to these attribute val ues without wor-
rying about other attribute values. Furthermore, if one as-
sumes more stringent conditi ons, often one can construct an
additive vaue function in which each attribute contributes
to overadl preference to a certain “degree” (the weight of
that attribute) [13]. For instance, it is common in engineer-
ing design problems to make such assumptions and simply
require users to assess the weights[6]. This alowsthe di-
rect tradeoffs between values of different attributesto be as-
sessed concisely. Case-based approaches havealso recently
been considered [10].

Models such as these make the preference dlicitation pro-
cess easier by imposing specific requirements on the form
of the utility or preference function. We consider our CP-
network representation to offer an appropriate tradeoff be-
tween allowing flexible preference expression and impos-
ing a particular preference structure. Specifically, unlike
much of the work cited above, conditional preference state-
ments will be permitted.

The remainder of the paper isorganized asfollows. In Sec-
tion 2, we describe the necessary background on preference
functions. We define our graphical preference model, CP-
networks, in Section 3 and describe its semantics in terms
of ceteris paribus (conditional preferential independence)
statements. Though the CP-semantics of the local prefer-
ence statements could be considered somewhat weak, some
surprisingly strong conclusions regarding dominance can
often be drawn based on the network structure. In Sec-
tion4, weconsider thetask of answering dominancequeries
as a search for a sequence of more preferred (or less pre-
ferred) aternatives leading the to potentially dominating
(or dominated) outcome. We formally define the search
space and describe several completeness-preserving prun-
ing techniques. In Section 5, we describe severa search
strategies, heuristics designed to work effectively for cer-
tain types of problems. We show that these heuristics
are backtrack-free for certain types of networks and where
backtrack pointsarisefor other types. We al so describe how
to view this problem as a planning problem. To conclude,
in Section 6 we briefly describe the use of CP-netsin two
abstract applications. The first is the sorting of a product
database using the preferences over product features, allow-

ing the most preferred products to be identified for a con-
sumer. The second istheuse of CP-netsin constraint-based
optimization. Finaly, we offer some thoughtson futurere-
search.

2 Preference Rdations

We focus our attention on single-stage decision problems
with complete information, ignoring in this paper any is-
sues that arise in multi-stage, sequentia decision analysis
and any considerationsof risk that arisein the context of un-
certainty.? We begin with an outlineof the relevant notions
from decision theory. We assume that the world can be in
one of anumber of states § and a each state s there are a
number of actions A, that can be performed. Each action,
when performed at a state, has a specific outcome (we do
not concern ourselves with uncertainty in action effects or
knowledge of the state). The set of al outcomesis denoted
O. A preference ranking is atotal preorder > over the set
of outcomes. o; = o, means that outcome o, is equaly
or more preferred to the decision maker than o,. Theam
of decision making under certainty is, given knowledge of
a specific state, to choose the action that has the most pre-
ferred outcome. We note that the ordering > will be differ-
ent for different decision makers. For instance, two differ-
ent customersmight haveradically different preferencesfor
different types of computer systems that asales programis
hel ping them configure.

Often, for a state s, certain outcomes in @ cannot result
fromany actiona € A,: thoseoutcomesthat can obtainare
called feasible outcomes (given s). In many instances, the
mapping from states and actions to outcomes can be quite
complex. Inother decision scenarios, actions and outcomes
may be equated: auser isalowed to directly select afeasi-
ble outcome (e.g., select a product with a desirable combi-
nation of features). Often statesmay play norole(i.e, there
isasingle state).

What makes the decision problem difficult is the fact that
outcomes of actions and preferences are not usualy rep-
resented so directly. We focus here on preferences. We
assume a set of features (or variables or attributes) F' =
{F1,---F,} over which the decision maker has prefer-
ences. Each feature F; is associated with a domain of fea-
ture values 7; = {fi,---fi } it can take. The product
space F = F; x --- x F, isthe set of outcomes. Thus
direct assessment of a preference functionis usually infea
sible due to the exponentia size of F. We denote a partic-
ular assignment of valuesto aset X C F as Z, and the
concatenation of two such partia assignmentsto X and Y
(XNnY =0)byzy. f X UY = F, Zyisa(complete)
outcome.

Fortunately, a preference function can be specified (or par-
tialy specified) concisdly if it exhibits sufficient structure.

23uch issues include assigning preferences to sequences of
outcome states, assessing uncertainty in beliefs and system dy-
namics, and assessing the user’s attitude towards risk.

We describe certain types of structure here, referring to
[13] for a detailed description of these (and other) struc-
tural formsand adiscussion of theirimplications. These no-
tions are standard in multi-attribute utility theory. A set of
features X is preferentially independent of its complement
Y = F— X iff, fordl &, Zs, 41, %2, we have

F1th = Fotn (T Eigh = Toth

In other words, the structure of the preference relation over
assignmentsto X, when al other features are held fixed, is
the same no matter what values these other features take.
If the relation above holds, we say Z; is preferred to z»
ceteris paribus. Thus, one can assess the relative prefer-
ences over assignments to X once, knowing these prefer-
ences do not change as other attributesvary. We can define
conditional preferential independence analogously. Let X,
Y and Z partition F' (each set isnonempty). X and Y are
conditionally preferentially independent given 7 iff, for all
fl, fz, gl, 372, we have

Frth 2 = Eoth 20T E10p7 > Tt ?

In other words, the preferential independence of X and YV
only holdswhen 7 isassigned 7. If thisrelation holds for
all assignments 7, we say X and Y are conditionally pref-
erentially independent given ~.

Thisdecomposahility of apreference functionsoften alows
one to identify the most preferred outcomes rather readily.
Unfortunately, the ceteris paribus component of these defi-
nitions ensuresthat the statements one makes arerel atively
weak. In particular, they do not imply a stance on specific
value tradeoffs. For instance, suppose two features A and
B are preferentially independent so that the preferences for
values of A and B can be assessed separately; e.g., sup-
pose a; = as and by = bsy. Clearly, a;b; isthe most pre-
ferred outcome and a5 b, isthe least; but if feasibility con-
straints make a1 b, impossible, we must be satisfied with
oneof ay bs or asb;. We cannot tell whichismost preferred
using these separate assessments. However, under stronger
conditions(e.g., mutual preferential independence) one can
construct an additive value function in which weights are
assigned to different attributes (or attribute groups). This
is especialy appropriate when attributes take on numerical
values. We refer to [13] for adiscussion of this problem.

Given such a specification of preferences, a number of dif-
ferent techni ques can be used to search the space of feasible
outcomes for amost preferred outcome.

3 CP-Networks

In thissection we describe anetwork representation that al-
lowsthe compact (but generally incomplete) representation
of a preference relation. We first describe the basic model
and its semanti csand then describeinference proceduresfor
dominance testing.

Our representation for preferences is graphica in nature,
and exploitsconditional preferentia independencein struc-
turing auser’s preferences. The model issimilar to aBayes
net on the surface; however, the nature of the relation be-
tween nodes within anetwork isgeneraly quiteweak (e.g.,
compared with the probabilistic relations in Bayes nets).
Othershave defined graphical representationsof preference
relations; for instance Bacchus and Grove [1] have shown
some strong results pertaining to undirected graphical rep-
resentations of additive independence. Our representation
and semantics is rather distinct, and our main aim in using
thegraphisto capture statements of conditional preferential
independence. We notethat reasoning about ceterisparibus
statements has been explored in Al, though not in the con-
text of network representations[7].

For each feature F', we ask the user to identify a set of par-
ent features P(F7) that can affect her preference over vari-
ous F' values. That is, given a particular value assignment
to P(F'), the user should be able to determine a preference
order for the values of F, all other thingsbeing equal. For-
mally, denoting all other festures aside from F and P(F')
by F, wehavethat F and F are conditionally preferentially
independent given P(F). Given thisinformation, we ask
the user to explicitly specify her preferences over F' values
for al possible P(F') values. We usethe aboveinformation
to create an annotated graph in which each feature F' has
P(F) asitsset of parents. The node F' is annotated with a
condition preference table (CPT) describing theuser’spref-
erences over F's values given every combination of par-
ent values.® We call these structures conditional preference
networks (or CP-networks). We note that nothing in the
semantics forces the graph to be acyclic, though we argue
below that most natural networks will indeed be acyclic.
Moreover, even cyclic CP-networks cannot express all pos-
sibletotal preference orderings, ascan beshownby asimple
counting argument.

Weiillustrate the network semantics and some of its conse-
quences with a series of examples. In the following exam-
ples al features are boolean, though our semantics is de-
fined for features with arbitrary finite domains.

Examplel Askingtheuser todescribe her preference over
feature B, we are told that this preference depends on the
value for A and on that value alone (ceteris paribus). We
then make A aparent of B and ask about her preference on
B for each value of A. She may say that, when « holds,
she prefers b over b, and when @ holds she prefers b over b,
ceteris paribus. Thisiswritten here as:

a:b>=1
a:b=b

3That is, we assume that a preorder is provided over the do-
main of F', such that for any two values f; and f;, either f; > f;,
f; = fi,or f; and f; are equally preferred. For ease of presen-
tation, we ignore indifference in our algorithms (though its treat-
ment is straightforward). We assumethisrelation isfully specified
(though see Section 6).

Example2 Supposewe havetwo features A and B, where
A isaparent of B and A has no parents. Assume the fol-
lowing conditional preferences:

a=a a:b>=b T:bx=b
Somewhat surprisingly, thisinformation is sufficient to to-
tally order the outcomes:

ab > ab = ab > ab.

Noticethat we can judge each outcome in terms of the con-
ditional preferences it violates. The ab outcome violates
none of the preference constraints. Outcome ab violatesthe
conditional preferencefor B. Outcomeab violatesthe pref-
erencefor A. Outcomeab violatesboth. What issurprising
isthat the ceteris paribus semantics implies that violating
the A constraintisworsethan violatingthe B constraint (we
have ab > @b). That is, the parent preferences have higher
priority than the child preferences.

Example3 Suppose we have three features A, B, and C,
and suppose that the preference dependency graph is dis-
connected. Let'sassumethata > @, b > b, andc > .
Given thisinformationwe can concludethat abc isthe most
preferred outcome, then comes @be, abe, and abe. These
three cannot be ordered based on the information provided.
Less preferred than thelast two is abé, and so on. The least
preferred outcome is @be.

Example4 Suppose we have three features A, B, and C,
and the conditiona preference graph forms a chain with A
having no parents, A theparent of B, and B theparent of C'.
Suppose we have the foll owing dependence information:

a-a, a:b>=b a@:bs=b b:cwc b:C>c

These preference constraintsimply the following ordering:
abe = abé = abé = abe = @be = @be = abe,

which totally orders all but one of the outcomes. Notice
how we get from one outcome to the next in the chain: we
flip (or exchange) theval ue of exactly onefeature according
to the preference dependency information. The element not
in this chain is @be, and we can derive the ordering abe >
@be > abe. Thus, theonly two outcomes not totally ordered
areabe and abe. From Example 2, we saw that viol ationsof
preference constraintsfor parent features are worse than vi-
olationsof constraintsover child preferences. In one of the
two unordered outcomes we violate the preference of the
most important feature (A), whilein the other outcome we
violate preference over two |ess important features (B and
(). The semantics of CP-networks does not specify which
of these tuplesis preferred.

There are two important thingsto notice about these exam-
ples. First, achain of “flipping feature values’ can be used
to show that one outcome is better than another. In Exam-
ple 4, the conditiona preferences for C' alow the value of

C' to be “flipped” in outcome abe to obtain abe. B’svadue
can then be flipped (given @) to obtain @be, and so on. Sec-
ond, violations are worse (i.e., have a larger negative im-
pact on preference) the higher up they are in the network,
although we cannot compare two (or more) lower level vi-
olationsto violation of a single ancestor constraint. These
observations underly the inference algorithms bel ow.

As mentioned, the semantics of CP-nets do not preclude
cyclic networks. For instance, a two-variable network
where A dependson B and B depends on could be consis-
tently quantified as follows:

a:b=b, a:b=b
b:a=a b:a@>a

Under these preferences, the user simply prefers A and B
to have the same value, with both ab and @b maximally
preferred. Acyclic graphs aways have a unique most-
preferred outcome. We note that cyclic preference graphs
can be inconsistent (e.g., in the example above, smply re-
verse the conditional preferences for B under each value of
A). Indeed, acyclic graphs are aways consistent (i.e., cor-
respond to at |east one well-defined preference ordering). It
seems thereisrarely aneed for cyclic structures unless one
wants to express indifference between certain assignments
to subsets of variables. In this case, one can often cluster
thevariablesto maintain acyclicity. Inwhat follows, we as-
sume that our CP-nets are acyclic.

4 Searchingfor Flipping Sequences

We assume we are given an acyclic CP-network over fea
tures Fy, - - - F,. By convention, we assume the ordering of
these features respects the topology of the network (that is,
the parentsof any F; haveindices;j <). Weusez;, %, v;,
etc. to denote values of feature F;. The basic inference
problem we address is the following: given a CP-network
N,andtwooutcomesx = z1x2 - Tp, ¥ = Y1¥Y2 - - " Yn, IS
x » y aconseguence of preferences of the CP-network? In
other words, isthe outcome x preferred to y? We treat the
inference problem as a search for a flipping sequence from
the (purported) less preferred outcome y, through a series
of more preferred outcomes, to the (purported) more pre-
ferred outcome x, where each vaue flip in the sequence is
sanctioned by the network . Conversdly, we can view the
problem as asearch inthe oppositedirection, fromthemore
preferred outcome to the less preferred outcome.

4.1 Improving Search

Given any CP-network, and aquery x > y, we define the
improving search tree as follows. The search tree isrooted
ay = y1y2 - - yn,; thechildrenof any nodez = 2125 - - - 2,
inthe search tree are those outcomes that can be reached by
changing onefesture value z; to z; such that =/ - z; given
thevalues z;,j < 4. Notethat possible improving vaues
zi of F; can be readily determined by inspecting the CPT

Figure 1: An Example Conditiona Preference Graph

for F;. Since the only preference statements explicitly rep-
resented in the network are those captured by the CPTs, it
isclear that x y isimplied by N iff there exists a path
from y to x in theimproving search tree. Thus, any com-
plete search procedure—any procedure guaranteed to ex-
amine every branch of the search tree—will be a sound and
complete query answering procedure. All procedures dis-
cussed in thispaper are, in this sense, sound and complete.

Example5 Consider the preference graph of Figure 1.
Suppose that the conditional preferences are:

a=a, bx>b;

(aADYV(@AD):c>=T (aAb)V(GAD):Cxc
cid>=d;, ¢:d>=d; d:e=7 d:e>e;
d:f~=f d:f=f; f:9-7 [:9>g
g:h>=h, g:h>h

Suppose we want to compare outcome abede j_"yﬁ (which
violates the G preference) and outcome abede fgh (which
violates the A preference). In order to show that the first

is preferred, we generate the sequence: abede fgh <
abedefgh < abedefgh < abedefgh < abedefgh <
abede fgh. Intuitively, we constructed a sequence of in-
creasingly preferred outcomes, using only valid conditional
independence relations represented in the CP-network, by
flipping values of features. We are alowed to change the
value of a“higher priority” feature (higher in the network)
to itspreferred value, even if thisintroduces a new prefer-
ence violationfor somelower priority feature (a descendent
in the network). For instance, thefirst flip of A’svaluein
this sequence to its preferred state repairs the violation of
A’s preference constraint, while introducing a preference
violationwith respect to C' (thevaluet isdispreferred when
ab holds). This processisrepested (e.g., making C' tekeits
conditionally most preferred value at the expense of violat-
ing the preference for D) until the single preference viola
tionof F' (inthe“target” outcome) is shown to be preferred
to the single preference violation of A (in the initia out-
come). This demonstrates how the violation of conditional
preference for a feature is dispreferred to the violation of
one of its descendent’s preferences.

Supposewe compare abede fgh (whichviolatesthe G pref-
erenceand the H preference) and abede fgh (whichviolates
the A preference). Theseturn out not to be comparable (nei-
ther is preferred to the other). The sequence of flips above
cannot be extended to change thevauesof both G and H so
that their preference constraints are violated. The solevio-
lation of the A constraint cannot be dominated by the vio-

lation of two (or more) descendentsin a chain.
If we want to compare abedefgh (which violates the £

preference and the G preference) and abede fgh (whichvio-
latesthe A preference), we can use the foll owing sequence:

abede fgh < abedefgh < abedefgh < abedefgh <
abedefgh. Theviolationof £ and G ispreferred to the vi-
olationof A: intuitively, the A violationcan be absorbed by
violation in each path starting at D.

Now consider the comparison of abede fgh (which violates
theG and H preferences) and @bede fgh (which violatesthe
A and B preferences). We can use the following sequence
of flips to show preference: @bedefgh < abedefgh <
abedefgh < abedefgh < abédefgh < abedefgh <
abede fgh < abedefgh < abedefgh < abede fgh. This
shows how two violations in ancestor features covers two
violationsin their descendents.

These examplesillustratehow certain preferenceviolations
have priority over othersin determining the relative order-
ing of two outcomes. Intuitively, dominance is shown by
constructing a sequence of legal flips from the initia out-
come to the target.

4.2 Worsening Search

A query x = y can aso be answered using search through
the worsening search tree, defined as follows. The search
treeisrooted at x = z x5 - - - T, ; the children of any node
7 = 2129 -z, inthe search tree are those outcomes that
can be reached by changing one feature value z; to =/ such
thet z; < z; giventhevalues z;,j < i. Note that possi-
bleworsening values =} of F; can be readily determined by
inspecting the CPT for F;. Again,itisclear thatx » y is
implied by N iff there existsapath fromx to y inthewors-
ening search tree.

While clearly any path from x to y that existsin the wors-
ening search tree corresponds to a path from y to x in the
improving search tree, and vice versa, the search space may
be such that searching in theimproving search tree is most
effective for some queries, while searching in the worsen-
ing search treeis most appropriatefor others.

Example6 Consider the CP-network described in Exam-
ple 4. Suppose we wish to test whether abe = abe. Taking
abe astheroot of the worsening tree, the only path one can
generate is abe > @be > @be > abe. In other words, the
waorsening tree does not branch and leads directly to a pos-
itiveanswer to the query. In contrast, theimproving search
treerooted at @be consists of six branches (with amaximum
length of seven nodes), and only one path leadsto asolution
(seeFigure 2).

abc

Figure 2: Improving Search Tree from abe (Example 6)

Example7 With the same network, consider the query
abe = @be. Taking @be as the root of the improving search
tree, the only path inthetreeisabe < abé < abé < abe. In
contrast, the worsening search tree rooted at abc consists of
six branches (with amaximum length of seven nodes), and
only one path leads to a solution.

For thisreason, we believethat aparallel search in both the
improving and worsening search treesis generally most ap-
propriate. Thoughwe haveillustrated positivequeriesonly,
the same considerationsapply to negative queries, where, in
fact, exploitingsmall search treesisespecialy important in
order to quickly fail.

4.3 Suffix Fixing and Extension

Though we haven't yet detail ed specific search procedures,
in the remainder of this section we suppose that we have
some complete (and necessarily sound) search procedure.
Regardless of whether one uses improving or worsening
search, there are two simple rules that alow one to make
deterministic moves in search space (i.e., choose flips that
need not be backtracked over, or reconsidered) without im-
pacting compl eteness of the search procedure.

The first rule is suffix fixing. We define a suffix of an al-
ternativez = zyz2 - - -z, to be some subset of the values
ZiZiv1 - Zn, © > 1. A suffix can be defined for any le-
ga ordering of the features. Suppose an improving search
for the query x = y takes usfrom the root node y to node
Z = z129---zp. Suppose further that some suffix of z
matchesthe suffix of target x; thatis, z; = =, foral j > 4.4
The suffix fixing rule requiresthat those features making up
the suffix never be flipped. The following proposition en-
sures that we never need reconsider a decision not to flip
features in a matching suffix.

Proposition 1 Let there be a path in the improving search
“The matching suffix can be “created” by a reordering of the

featuresthat is consistent with the partial ordering of the (acyclic)
CP-network.

treefromroot y to nodez, such that some suffix of z matches
that of thetarget x. If thereisa path fromy tox that passes
through z, then there is a path from z to x such that every
node along that path has the same values as z for the fea-
tures that make up the suffix.

Thiseffectively restrictsthe search treeunder z tohave only
pathsthat retain the suffix values. Though one may haveto
backtrack over choices that lead to z, one will not have to
consider the full search tree under z. The suffix fixing rule
also appliesto worsening search.

A second compl eteness-preserving rule is the suffix exten-
sion rule. Suppose that a path to intermediate node z has
been found that matches some suffix of the target x. Fur-
thermore, supposethat the valuesof z allow thissuffix tobe
extended; that is, suffix z; z;41 - - - z, matchesthetarget and
feature Fi~* can beimproved fromz;_; to z/_, = Ti1.>
Then theflip to z/_; can be chosen and not reconsidered.

Proposition 2 Let there exist a path in the improving
search tree fromroot y to node z, such that some suffix of
z matchesthat of thetarget x, and that the suffix can be ex-
tended by a legal move from z to z’. If there exists a path
fromy to x that passes through z, then there exists a path
from z’ to x such that every node along that path has the
samevaluesasz’ for thefeaturesthat make up the extended
suffix.

Example8 Consider the CP-network of Figure 1 with the
conditional preferences asin Example 5. Suppose we were
to consider the query

abedefgh - abede fgh

using an improving search. Suffix fixing means that we
never haveto consider flipping g, h or e (thereisareorder-
ing of thefeatures that has these three as the rightmost fea-
tures). The suffix extension rule means that we canflip f to
f(asd : f = f), without backtracking over thischoice. We
cannot immediately flip d to d in the context of ¢, so suffix
extensionis not applicable (once f isflipped).

4.4 Forward Pruning

In this section we describe a general pruning mechanism
that can be carried out given aquery x > y. It
o often quickly shows that no flipping sequence is pos-
sible
o prunes the domains of the features to reduce the flip-
ping search space;
o doesn't compromise soundness or compl eteness; and
e isrelaively cheap (time is O(nrd?) where n is the
number of features, » isthe maximum number of con-
ditional preference rules for each feature, and d isthe
size of the biggest domain).

The genera ideaisto sweep forward through the network,
pruning any values of a feature that cannot appear in any

SAgain, the suffix can be found using feature reordering.

(improving or worsening) flipping sequence to validate a
query. Intuitively, we consider the set of flips possible, ig-
noring interdependence of the parents and the number of
times the parents can change their values.

We consider each featurein an order consi stent with the net-
work topology (so that parents of anode are considered be-
fore the node). For each feature F, we build a graph with
nodes corresponding to the possible values for F', and for
each conditional preference relation

CIVUL > Ug - Uy

such that ¢ is consistent with the pruned values of the par-
ents of I, weinclude an arc between the successive values
(i.e., between the values v; and v;11).

We can prune any value that isn't on a directed path from
x'svauefor feature F' to y’'svauefor feature . Thiscan
be implemented by running Dijkstra'sagorithm [5] twice:
once to find the nodes reachable from x’s vaue for festure
F and again to find the nodes that can reach y’svaue for
feature F'. These sets of nodes can beintersected to find the
possiblevaluesfor F. If there are no nodes remaining, the
domination query fails: thereisno legal flipping sequence.
Thisoftenresultsin quick failurefor straightforward cases,
so that we only carry out the search for non-obvious cases.

Example9 Consider the CP-network of Figure 1 with the
conditional preferences asin Example 5. Consider a query
of theform

ab...=ab...

First we consider A. We can draw an ac a — @, and
find that both « and @ are on a path, so no values of A are
pruned.® We then consider B and draw an arc b — b; but
there are no paths from & to b, so the query fails quickly
without looking at the other features.

One could imagine extending this pruning phase to include
more information, such as the sequences of values through
which the parents can pass. From this one can determine
the possible sequences of values through which the child
feature could pass. Generaly, the combinatorics of main-
taining such sequencesisprohibitive; butinthebinary case,
any path through the set of valuesiscompletely determined
by the starting value and a count of the number of times
the vaue flips. Pruning till ignores the possible interde-
pendencies of the values for the parents, but for singly-
connected networks (wherewe can guaranteethe sequences
of values the parents can pass through are independent),
pruning iscompleteinthe sensethat if it stopswithout fail-
ing there is a flipping sequence. This was the basis of the
counting agorithmin [3] for singly-connected binary CP-
networks.

bif _the example were changed slightly so that A had a third
valuea, wherea = @ > a, then this third value could be pruned
from A, thus simplifying the tablesfor all the children of A.

5 Search Strategiesand Heuristics

In the previous section, the search space was formally de-
fined, and several completeness preserving rules for prun-
ing the search space were defined. Thisleaves opentheis
sue of effective proceduresfor searching. Inthissection we
describe severa heuristicsfor exploringthe search tree. We
first describe some simple heuristics that seem to be effec-
tivefor many networks, and are, in fact, backtrack-free for
certain classes of networks. We then show how this search
problem can be recast as aplanning problem and briefly de-
scribe the potential benefits of such aview.

5.1 Rightmost and L east-lmproving Heuristics

The rightmost heuristic requires that the variable whose
value oneflips when deciding which child to movetoisthe
rightmost variablethat can legally be flipped. For instance,
consider the improving search tree in Example 6 (asillus-
trated in Figure 2). Given atarget outcome @be, we see that
the rightmost heuristic leads us directly to the target in two
steps. If the target outcome were different, say abe, then
the rightmost heuristic has the potentia to lead us astray.
However, when we incorporate the suffix-fixing rule into
the search, we see that the rightmost heuristic (defined now
as flipping the rightmost value that doesn’'t destroy a suf-
fix match) will lead directly to any target outcome in the
search tree. For example, given target outcome abce, the
rightmost heuristic discovers the shortest path to the target:
noticea so that suffix-fixing prevents us from exploring the
longest (Iength six) path to the target.

Thisexample suggeststhat for chains, therightmost heuris-
ticwill lead to a proof, if one exists, without backtracking.
Thismay not be the the case, however, if variables are not
all binary.

Example10 Consider the CP-network where variable A,
withdomain {a1, as, as}, isaparent of booleanvariable B.
Conditional preferences are given by

a] > a2 > as
ar:b>=b; as:b>=b as:b>b

Given query a;b > asb, the rightmost heuristic in an im-
proving search could first construct the sequence azb <
a1b, reaching adead end (thusrequiring backtracking). The
direct sequence asb < asb < asb < a1bisalso consistent
with the rightmost heuristic.

In the example above, the rightmost heuristic permitted a
“jump” from a3 tothemost preferred value a; without mov-
ing through the intermediate value a,. This prevented it
from discovering the correct flipping sequence.

In multivalued domains, another useful heuristicistheleast
improving heuristic (or in worsening searches, the least
worsening heuristic): when the rightmost vaue can be
flipped to several improving values given its parents, the
improving vauethat isleast preferred is adopted. Thisal-
lows greater flexibility in the movement of “downstream”

variables. While one can always further improve the value
of the variable in question from its least improving vaue
to a more preferred value (provided that parent values are
maintained), “ skipping” valuesmay prevent usfrom setting
its descendents to their desired values.

Both the rightmost and least improving heuristics can be
viewed asembodying aform of least commitment. Flipping
thevalues of therightmost possiblevariable (i.e., avariable
with the smallest number of descendents in the network)
can be seen as leaving maximum flexibility in flipping the
values of other variables. An upstream variable limitsthe
possible flipping sequences more drastically than a down-
stream variable—specifically, atering a specific variable
does not limit the ability to flip the values of its nondescen-
dents. For thereasons described above, theleast improving
heuristic can be cast inasimilar light.

Unfortunately, whilethe | east-commitment approach works
wdl in practice, it does not alow backtrack-free search in
general, as the following example shows.

Example 11l Consider the CP-network withthreevariables
A, B and C such that A istheonly parent of B and B is
the only parent of C'. Suppose A hasdomain {a, @}, B has
domain {1, b3, b3} and C' has domain {¢,z}, with thefol-
lowing conditional preferences:

a > a;

a:bs > by = by;
a:bs > by > bs;

by 1€ > ¢ byVbsg:c-¢

Consider the query abse > @by c with an improving search.
¢ cannot beimproved in the context of b;. However b, can
beimprovedto b3 inthe context of @, but thisleadsto adead
end. Theright thingto doistoflip a first, then change b, to
b5 which will et you flip ¢ and then change b to bs.

While queries over chain-structured networks with mul-
tivalued variables cannot reliably be searched backtrack-
free using therightmost and | east-improving heuristics, this
search approach is backtrack-free for chains when al vari-
ables are binary. Intuitively, thisis the case because chang-
ing the value of the rightmost allowable variable does not
impact the ability to flip its parent’s value; furthermore,
changing this variable cannot prevent its child from being
flipped, sinceif the child needed adifferent value (and coul d
have been flipped), it would have been flipped earlier. For
similar reasons, binary tree-structured networks (where ev-
ery variable has at most one parent, but perhaps multiple
children) can aso be searched backtrack-free.

Example12 Consider the binary tree-structured prefer-
ence graph of Figure 3 with the conditiona preferences:

a>a
a:b=b, a:bs=b
a:c»7¢ a:cr»c

Figure 3: A Tree-Structured Conditional Preference Graph

c:d-d;

c:e > ¢€;

Consider thequery abede > @bede. Supposewe are search-
ing for an improvingflipping sequence from abede. By suf-
fix fixing, weleave e untouched. Thefirst vaueweflipisec.
Sincethisistheonly way we couldever get toflip d, and be-
cause c ishinary, thereisonly ever one other valueit could
have. We can now flip d forming @bede (d and e then re-
main untouched). We can flip b, and fix it by suffix fixing
(asthereisan ordering where it is part of the fixed suffix).
The only value we can flip at this point is a; this gives us
abede. We can now flip ¢ and we are done.

Proposition 3 The rightmost search heuristic, in conjunc-
tion with suffix-fixing and suffix-extension, is complete and
backtrack-free for chain- and tree-structured CP-nets with
binary variables.

Polytrees (singly-connected networks containing no undi-
rected cycles) cannot be searched without backtracking in
general, even when variables are binary. This is due to
the fact that severa parents of a given node may each be
allowed to have their values flipped, but only one of the
choices may lead to the target outcome, while the others
lead to deadends. For instance, supposewe consider Exam-
ple5, restricted to the variables A, B, €', and are given the
query abé > abe. Using animproving search rooted at @be,
wehaveachoiceof flipping A or B. If B ischosen, we start
down the path @be < @be; but thisclearly cannot lead to the
target, since thereis no way toflip B back to b. A deadend
will be reached and we must backtrack to flip A before B,
leading to the solution path @be < abe < abe.

Essentialy, thismeanswe haveto may haveto consider dif-
ferent variable orderingsover the ancestors of agiven node.
It turnsout that these are theonly backtrack pointsin binary
polytrees.

Finally, for general (multiply-connected) CP-nets, complex
interdependencies can exist among the parents of variables
because the parents themselves may share ancestors. This
can lead to complex search pathsin the successful search for
a flipping sequence. Though we don’t provide examples,
one can construct networksand specific queriessuch that no
fixed ordering of variables alows the rightmost heuristic to
work backtrack-free. We also notethat the shortest flipping
sequence for certain queries can be exponentia in length
given amaximally-connected acyclic network (e.g., we can

require sequences of length 0(2”/2) inan n-variablebinary
network). We do not believe such sequences arerequiredin
singly-connected networks.

It should be noted that while one can generate example net-
works and queriesthat require complicated search, involv-
ing consi derabl e backtracking usingmost simple heuristics,
such examplestend to be rather intricate and obscure. They
invariably require a tight interaction between the network
structure, the conditional preference statements quantifying
the network, and the specific query itself. None of the nat-
ural examples we have seen require much search.

5.2 Flipping Sequences as Plans

In this paper we have considered searching directly for flip-
ping sequences. This can be seen as a case of state-space
search. It is aso possible to think about answering domi-
nance queries as atype of planning problem. A conditional
preference statement of the form

CIVUL > Ug - Uy

can be converted into a set of STRIPS actions for improv-
ing the value for avariable. In particular, this conditional
preference statement can be converted intoaset of d — 1
STRIPS operators of theform (for 1 < 7 < d):

Preconditions: ¢ A v;
Add List: v;_;
Deletelist: v;

Thiscorrespondsto the action of improvingv; tov;_ inthe
context of ¢. (A different set of actionswould be created for
worsening).

Givenaquery x > y, wetreat y asthe start state and x as
the goal state. It isreadily apparent that that the query isa
conseguence of the CP-network if and only if thereisaplan
for the associated planning problem. A plan correspondsto
aflipping argument.

The previous agorithms can be viewed as state-based for-
ward planners. It is often the case that domain-specific
heuristics can be easily added to a forward search [2], and
we expect the same here. We could also use other planning
techniques such as regression, partia-order planning, plan-
ning as satisfiability and stochastic local search methods
for this problem. The application of regression and partial-
order planners (more generally, backchaining planners) can
provide support for reasoning about the changesin ancestor
values required for a specific descendent toflip itsvalue to
itstarget. We notethat the planning problems generated by
CP-querieswill generally look quite different in form from
standard Al planning problems, as there are many more ac-
tions, and each action isdirected toward achieving a partic-
ular propositionand requires very specific preconditions.

6 Concluding Remarks

In this paper we introduced CP-networks, a new graphi-
cal modd for representing qualitative preference orderings
which reflects conditional dependence and independence
of preference statements under a ceteris paribus semantics.
Thisforma framework often alows compact and arguably
natural representations of preference information. We ar-
gued that given a CP-network, the basic inference problem
of determining whether one of two given vectors of feature
values is preferred to the other is equivaent to the task of
finding aconnecting sequence of flippingindividual feature
values. We characterized the corresponding search space
and described severa strategies and heuristics which often
significantly reduce the search effort and allow oneto solve
many problem instances efficiently.

We see various applications of CP-networks and our domi-
nance testing strategies and heuristics. One of theseis sort-
ing a product database according to user-specified prefer-
ences. This problem is highly relevant in the context of
eectronic commerce. Severa rather conceptualy smplis-
tic implementations are available on the World Wide Web
(eg., Active Buyers Guide). The genera ideais to assist
a user in selecting a specific product from a database ac-
cording to her preferences. Here, it isvery important to use
compact and natural representations for preference infor-
mation. CP-networks extend current models (which typi-
caly don't alow conditiona preference statements). An-
other important aspect of this problem is that the given
database precisdly defines the items (represented as vec-
torsof featurevalues) available, and preferenceinformation
is only required to such an extent that the choice is suffi-
ciently narrowed downto asmall selection of productsfrom
this database. Dominance testing strategies are important
in this context to find a set of Pareto-optimal choices given
the (conditional) preference information extracted from the
user. Here, an interactive and dynamic approach appears
to be most promising, where the user is prompted for addi-
tiona preference statements until the ordering of the items
in the database is sufficiently constrained by the preference
information to offer a reasonably small selection of prod-
ucts. Whilethe dominance a gorithmsare an important part
of the database sorting task, the problem does not generdly
requirethat al pairwise comparisons be run to completion.
Certain preprocessing steps can be taken, that exploit the
network structure, to partitiontuplesin the database accord-
ing to values of high priority attributes.

Another application area is constraint-based configuration,
where the task is to assemble a number of components ac-
cording to user preferences such that given compatibility
congtraints are satisfied [3, 6]. A simple example of thisis
the assembly of components for computer systems where,
for instance, thetype of system bus constrai nsthe choi ce of
video and sound cards. CP-networks can be used to repre-
sent the user preferences which are used together with com-
patibility constraints to search for most preferred, feasible

configurations. In contrast to the database sorting applica
tion above, herethe set of possiblevectors of feature values
(i.e., configurations) is not explicitly given, but implicitly
specified by the compatibility constraints. Dominance test-
ing is again required for finding most preferred solutions,
but now it hasto be combined with mechanismswhich limit
the search to feasible configurations|[3].

We are currently extending this work in two directions.
First, the search strategies and heuristics for dominance
testing presented in this paper have to be implemented in
order to empirically assess their performance on various
types of problem instances, including real-world problems,
as well as handcrafted examples exhibiting uniform, reg-
ular structures of theoretica interest. Secondly, we are
working on various extensions of the framework presented
here. These include cases wherethe conditional preference
statements contain a small amount of quantitativeinforma
tion. In particular, existing applications (such as onlinein-
teractive consumer guides) suggest that a limited amount
of such quantitative preference information might be rela
tively easy to extract from the user in a natural way, and is
very useful for inducing stronger preference orderings.

Another interesting issue is the extension of the represen-
tation and reasoning system such that incompletely spec-
ified conditiona preference information (i.e., incomplete
CP-tables) can be taken into account. Thisis motivated by
the fact that often the full preference information given by
the CP-tablesis not required for deciding a particular dom-
inance query. Therefore, it seems to be useful to consider
mechanisms which alow incompletely specified CP-tables
and dynamically prompt the user for additional preference
information when it is needed.

Finally, we intend to investigate the tradeoffs between the
amount of user-interaction required for extracting the pref-
erence information and the amount of computation needed
for determining most preferred feature vectors. By asking
very specific questions about particular, potentially com-
plex preferences, finding most preferred feature vectors
can become much easier. On the other hand, asking too
many questions, especially those not realy necessary for
establishing relevant preferences, will annoy the user and
make the system less usable. Thus, finding good trade-
offs between the amount of user-interaction and computa-
tion timefor answering queries—such as finding most pre-
ferred items from a database or optimal configurations—
seems to be a promising direction for futureresearch. This
is related to the motivation underlying goal programming
[8, 12]. The representations and search techniques pre-
sented in this paper form a starting point for such investi-
gations.

Acknowledgements: This research was supported by IRIS
I Project “Interactive Optimization and Preference Elicitation”
(BOU).

References

[1] Fahiem Bacchus and Adam Grove. Graphical models for
preference and utility. In Proceedings of the Eleventh Con-
ferenceon Uncertainty in Artificial Intelligence, pages3-10,
Montreal, 1995.

[2] Fahiem Bacchus and Froduald Kabanza. Using tem-
poral logic to control search in a forward chaining
planner. In Proceedings of the 3rd European Work-
shop on Planning, 1995. Available via the URL
ftp://logos.uwaterloo.ca:/pub/tiplan/tiplan.ps.Z.

[3] Craig Boutilier, Ronen Brafman, Chris Geib, and David
Poole. A constraint-based approach to preference elicitation
and decision making. In AAAI Spring Symposiumon Quali-
tative Decision Theory, Stanford, 1997.

[4] U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Util-
ity elicitation as a classification problem. In Proceedingsof
the Fourteenth Conferenceon Uncertainty in Artificial Intel-
ligence, pages 79-88, Madison, WI, 1998.

[5] Thomas H. Cormen, Charles E. Lierson, and Ronald L.
Rivest. Introductionto Algorithms. MIT Press, Cambridge,
MA, 1990.

[6] Joseph G. D’Ambrosio and William P. Birmingham.
Preference-directed design. Journal for Artificial Intelli-
gencein Engineering Design, Analysis and Manufacturing,
9:219-230, 1995.

[7] Jon Doyle and Michael P. Wellman. Preferential semantics
for goals. In Proceedingsof the Ninth National Conference
on Artificial Intelligence, pages 698—703, Anaheim, 1991.

[8] J.S. Dyer. Interactive goal programming. Management Sci-
ence, 19:62-70, 1972.

[9] Simon French. Decision Theory. Halsted Press, New York,
1986.

[10] Vu Ha and Peter Haddawy. Toward case-based preference
elicitation: Similarity measureson preference structures. In
Proceedingsof the Fourteenth Conferenceon Uncertaintyin
Artificial Intelligence, pages 193-201, Madison, WI, 1998.

[11] Ronald A. Howard and James E. Matheson, editors. Read-
ingsonthePrinciplesand Applications of Decision Analysis.
Strategic Decision Group, Menlo Park, CA, 1984.

[12] JamesP. Ignizio. Linear Programmingin Single and Mul-
tiple Objective Systems. Prentice-Hall, Englewood Cliffs,
1982.

[13] R.L.Keeney andH. Raiffa. Decisionswith Multiple Objec-
tives. Preferencesand Value Trade-offs. Wiley, New York,
1976.

[14] Yezdi Lashkari, Max Metral, and Pattie Maes. Collabora-
tiveinterface agents. In Proceedingsof the Twelfth National
Conference on Artificial Intelligence, pages 444449, Seat-
tle, 1994.

[15] Hien Nguyen and Peter Haddawy. The decision-theoretic
video advisor. In AAAI-98 Workshop on Recommender Sys-
tems, pages 77-80, Madison, WI, 1998.

